aboutsummaryrefslogtreecommitdiffstats
path: root/meowpp/dsa
diff options
context:
space:
mode:
authorcathook <b01902109@csie.ntu.edu.tw>2014-09-24 13:37:42 +0800
committercathook <b01902109@csie.ntu.edu.tw>2014-09-29 16:55:57 +0800
commit8b76fbb408f8eedab24195655c45c891af01eaab (patch)
tree414d7fc87885cb77e181a3ab99e334b837621036 /meowpp/dsa
parentef9af0d577c3a6b5d11fdeed7a9149d09973171b (diff)
downloadmeow-8b76fbb408f8eedab24195655c45c891af01eaab.tar
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.gz
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.bz2
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.lz
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.xz
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.zst
meow-8b76fbb408f8eedab24195655c45c891af01eaab.zip
Big change, detail see README.
Diffstat (limited to 'meowpp/dsa')
-rw-r--r--meowpp/dsa/!readme.asciidoc57
-rw-r--r--meowpp/dsa/BinaryIndexTree.h102
-rw-r--r--meowpp/dsa/DisjointSet.h135
-rw-r--r--meowpp/dsa/HashTable.h217
-rw-r--r--meowpp/dsa/KD_Tree.h303
-rw-r--r--meowpp/dsa/MergeableHeap.h168
-rw-r--r--meowpp/dsa/SegmentTree.h194
-rw-r--r--meowpp/dsa/SplayTree.h1151
-rw-r--r--meowpp/dsa/VP_Tree.h337
9 files changed, 0 insertions, 2664 deletions
diff --git a/meowpp/dsa/!readme.asciidoc b/meowpp/dsa/!readme.asciidoc
deleted file mode 100644
index d6eb3d7..0000000
--- a/meowpp/dsa/!readme.asciidoc
+++ /dev/null
@@ -1,57 +0,0 @@
-
-
-包含一些資料結構
-
-===== BinaryIndexTree.h
-
-極度簡化的 *SegmentTree* 已無區間更新的操作.
-
-.Classes
-* `meow::BinaryIndexTree<Value>`
-
-===== DisjointSet.h
-
-用來維護一堆互斥集的資訊.
-
-.Classes
-* `meow::DisjointSet`
-
-===== HashTable.h
-
-就是傳說中的HashTable
-
-.Classes
-* `meow::HashTableList<Data, HashFunc>`
-
-===== KD_Tree.h
-
-查詢第k近鄰居用的
-
-.Classes
-* `meow::KD_Tree<Vector>`
-
-===== MergeableHeap.h
-
-可合併Heap
-
-.Classes
-* `meow::MergeableHeap<Element>`
-
-===== SegmentTree.h
-
-線段樹
-.Classes
-* `meow::SegmentTree<Value>`
-
-===== SplayTree.h
-
-伸展樹, 比一般平衡樹稍強的東東
-* `meow::SplayTree<Key, Value>`
-* `meow::SplayTree_Range<Key, Value>`
-
-===== VP_Tree.h
-
-查詢第k近鄰居用的
-
-.Classes
-* `meow::VP_Tree<Vector>`
diff --git a/meowpp/dsa/BinaryIndexTree.h b/meowpp/dsa/BinaryIndexTree.h
deleted file mode 100644
index 1d2d9e8..0000000
--- a/meowpp/dsa/BinaryIndexTree.h
+++ /dev/null
@@ -1,102 +0,0 @@
-#ifndef dsa_BinaryIndexTree_H__
-#define dsa_BinaryIndexTree_H__
-
-#include <cstdlib>
-
-#include <vector>
-#include <algorithm>
-
-namespace meow {
-
-template<class Value>
-/*!
- * @brief 極度簡化的 \c SegmentTree 已無區間更新的操作
- *
- * 一般來說只能用在維護區間總和, 維護區間最大值只有在特殊情況才可以, 即
- * \b 針對每個元素, \b 每次update() \b 的值一定會大於等於原本的值 .
- * 若要用區間最大值 , 則 \a Value 的 \c operator+ 要寫成 \c std::max(...)
- *
- * @author cat_leopard
- */
-class BinaryIndexTree {
-private:
- std::vector<Value> array_;
-public:
- /*!
- * @brief constructor
- */
- BinaryIndexTree() {
- }
-
- /*!
- * @brief constructor
- *
- * @param [in] size 要維護的區間大小 \b [0,size)
- * @param [in] value 預設值
- */
- BinaryIndexTree(size_t size, Value const& value):
- array_(size, value) {
- }
-
- /*!
- * @brief constructor
- *
- * 將另一個 \c BinaryIndexTree 原封不動的複製過來
- * @param [in] tree2 另外一個 \c BinaryIndexTree
- */
- BinaryIndexTree(BinaryIndexTree const& tree2):
- array_(tree2.array_) {
- }
-
- /*!
- * @brief 將資料洗掉, 重設
- *
- * 時間複雜度\b O(N)
- *
- * @param [in] size 要維護的區間大小 \b [0,size)
- * @param [in] init 預設值
- * @return 無
- */
- void reset(size_t size, Value const& init) {
- array_.clear();
- array_.resize(size, init);
- }
-
- /*!
- * @brief 將array中第 \a index (從零算起)個element多加上指定的值
- *
- * 時間複雜度\b O(logN)
- *
- * @param [in] index 指定的index
- * @param [in] value 指定的值
- * @return 無
- */
- void update(size_t index, Value const& value) {
- index++;
- for ( ; index <= array_.size(); index += (index & -index)) {
- array_[index - 1] = array_[index - 1] + value;
- }
- }
-
-
- /*!
- * @brief 詢問 \a 0~index 的區間值
- *
- * 時間複雜度\b O(logN)
- *
- * @param [in] index 指定的index
- * @return 區間值
- */
- Value query(ssize_t index) const {
- index = std::min(index + 1, (ssize_t)array_.size());
- Value ret(0);
- for ( ; 0 < index; index -= (index & -index)) {
- ret = ret + array_[index - 1];
- }
- return ret;
- }
-};
-
-} // meow
-
-#endif // dsa_BinaryIndexTree_H__
diff --git a/meowpp/dsa/DisjointSet.h b/meowpp/dsa/DisjointSet.h
deleted file mode 100644
index 1711d7d..0000000
--- a/meowpp/dsa/DisjointSet.h
+++ /dev/null
@@ -1,135 +0,0 @@
-#ifndef dsa_DisjointSet_H__
-#define dsa_DisjointSet_H__
-
-#include <vector>
-#include <cstdlib>
-#include <cstdio>
-
-namespace meow {
-/*!
- * @brief 用來維護一堆互斥集的資訊
- *
- * DisjointSet 是個 \b 輕量級Data \b Dtructure, 用來維護一堆互斥集的資訊. \n
- * 相關資料可參考
- * <a href="http://www.csie.ntnu.edu.tw/~u91029/DisjointSets.html">
- * 演算法筆記
- * </a>
- *
- * @note
- * - 時間複雜度 \b 非常快 表示它真的算的超級快, 可以視為常數時間
- * - 預設值所有 \a number 所在的集合的編號就是 \a number 本身,
- * 即沒有任兩個數在同一個set裡面
- *
- * @author cat_leopard
- */
-class DisjointSet {
-private:
- size_t n_;
- std::vector<size_t> father_;
- std::vector<size_t> depth_;
- //
- size_t root_(size_t now) {
- if (father_[now] == now) return now;
- return (father_[now] = root_(father_[now]));
- }
-
- size_t merge_(size_t a, size_t b) {
- a = root_(a);
- b = root_(b);
- if (a == b) return a;
- if (depth_[a] > depth_[b]) {
- father_[b] = a;
- return a;
- }
- else {
- father_[a] = b;
- if (depth_[a] == depth_[b]) depth_[b]++;
- return b;
- }
- }
-public:
- /*!
- *@brief constructor
- */
- DisjointSet(): n_(0) {
- }
-
- /*!
- *@brief constructor
- *
- *@param [in] n elements數
- */
- DisjointSet(size_t n) {
- reset(n);
- }
-
- /*!
- *@brief constructor
- *
- *將另一個 \c DisjointSet 原封不動的複製過來
- *
- *@param [in] dsj 另一個 \c DisjointSet
- */
- DisjointSet(DisjointSet const& dsj):
- n_(dsj.n_), father_(dsj.father_), depth_(dsj.depth_) {
- }
-
- /*!
- *@brief 回傳指定的number所在的 \b 集合的編號
- *
- *時間複雜度 \b 超級快
- *
- *@param [in] a 指定的number
- *@return 集合的編號
- */
- size_t root(size_t a) const {
- return ((DisjointSet*)this)->root_(a);
- }
-
-
- /*!
- *@brief 回傳總element數
- *
- *@return 總element數
- */
- size_t size() const {
- return n_;
- }
-
- /*!
- *@brief 重設
- *
- *清空, 並且設定總集合大小為 \a n
- *
- *@param [in] n 重新設定的集合大小 \a n
- *@return 無
- */
- void reset(size_t n) {
- n_ = n;
- father_.resize(n);
- depth_ .resize(n);
- for (size_t i = 0; i < n; i++) {
- father_[i] = i;
- depth_ [i] = 1;
- }
- }
-
- /*!
- * @brief 合併
- *
- * 將 \a number1 所在的集合 跟 \b number2 所在的集合 \b 合併,
- * 並回傳合併後新的集合的編號. \n
- * 時間複雜度\b 非常快
- *
- * @param [in] a 即上述\a number1
- * @param [in] b 即上述\a number2
- * @return 新的編號
- */
- size_t merge(size_t a, size_t b) {
- return merge_(a, b);
- }
-};
-
-} // meow
-
-#endif // dsa_DisjointSet_H__
diff --git a/meowpp/dsa/HashTable.h b/meowpp/dsa/HashTable.h
deleted file mode 100644
index ed97d6d..0000000
--- a/meowpp/dsa/HashTable.h
+++ /dev/null
@@ -1,217 +0,0 @@
-#ifndef dsa_HashTable_H__
-#define dsa_HashTable_H__
-
-#include <vector>
-#include <list>
-
-namespace meow {
-
-/*!
- * @brief 一個當key相撞時會用list解決的hash_table
- *
- * @author cat_leopard
- */
-template<class Data, class HashFunc>
-class HashTableList {
-private:
- std::vector<std::list<Data> > table_;
- HashFunc func_;
-public:
- /*!
- * @brief constructor
- */
- HashTableList() {
- }
-
- /*!
- * @brief constructor
- *
- * 設定table size, hash function
- */
- HashTableList(size_t size, HashFunc const& func): table_(size), func_(func) {
- }
-
- /*!
- * @brief destructor
- */
- ~HashTableList() {
- }
-
- /*!
- * @brief copy
- */
- HashTableList& copyFrom(HashTableList const& b) {
- table_ = b.table_;
- func_ = b.func_;
- return *this;
- }
-
- /*!
- * @brief 清除資料
- */
- void clear() {
- for (size_t i = 0, I = table_.size(); i < I; i++) {
- table_[i].clear();
- }
- }
-
- /*!
- * @brief 清除資料, 指定新的size與hash function
- */
- void reset(size_t size, HashFunc const& func) {
- table_.clear();
- table_.resize(std::max(size, 1u));
- func_ = func;
- }
-
- /*!
- * @brief 回傳table size
- */
- size_t tableSize() const {
- return table_.size();
- }
-
- /*!
- * @brief 回傳目前有多少element在其中
- */
- size_t size() const {
- size_t ret = 0;
- for (size_t i = 0, I = table_.size(); i < I; i++) {
- ret += table_[i].size();
- }
- return ret;
- }
-
- /*!
- * @brief 回傳hash function
- */
- HashFunc const& func() const {
- return func_;
- }
-
- /*!
- * @brief 加入新的element
- */
- bool add(Data const& e) {
- size_t index = func_(e) % size();
- table_[index].push_back(e);
- return true;
- }
-
- /*!
- * @brief 把給定的HashTableList中所有的element全加進來
- */
- bool add(HashTableList const& h) {
- for (size_t i = 0, I = h.table_.size(); i < I; i++) {
- for (std::list<Data>::const_iterator
- it = h.table_[index].begin(); it != h.table_[index].end(); ++it) {
- insert(*it);
- }
- }
- return true;
- }
-
- /*!
- * @brief 刪除element
- */
- bool del(Data const& e) {
- size_t index = func_(e) % size();
- for (std::list<Data>::const_iterator
- it = table_[index].begin(); it != table_[index].end(); ++it) {
- if ((*it) == e) {
- table_[index].erase(i);
- return true;
- }
- }
- return false;
- }
-
- /*!
- * @brief 刪除有出現在給定的的HashTableList中的element
- */
- bool del(HashTableList const& h) {
- if (size() > h.size()) {
- for (size_t i = 0, I = h.table_.size(); i < I; i++) {
- for (std::list<Data>::const_iterator
- it = h.table_[index].begin(); it != h.table_[index].end(); ++it) {
- erase(*it);
- }
- }
- }
- else {
- for (size_t i = 0, I = table_.size(); i < I; i++) {
- for (std::list<Data>::const_iterator
- it = table_[index].begin(); it != table_[index].end(); ) {
- if (h.exist(*it)) {
- table_[index].erase(it);
- }
- else {
- ++it;
- }
- }
- }
- }
- return true;
- }
-
- /*!
- * @brief 查看某element是否已經擁有
- */
- bool exist(Data const& e) const {
- size_t index = func_(e) % size();
- for (std::list<Data>::const_iterator
- it = table_[index].begin(); it != table_[index].end(); ++it) {
- if ((*it) == e)
- return true;
- }
- return false;
- }
-
- /*!
- * @brief 回傳所有存下來的資料
- */
- std::vector<Data> all() const {
- std::vector<Data> ret;
- for (size_t i = 0, I = table_.size(); i < I; i++) {
- for (std::list<Data>::const_iterator
- it = table_[i].begin(); it != table_[i].end(); ++it) {
- ret.push_back(*it);
- }
- }
- return ret;
- }
-
- /*!
- * @brief 回傳所有存下來且key為index的資料
- */
- std::vector<Data> all(size_t index) const {
- index %= table_.size();
- std::vector<Data> ret;
- for (std::list<Data>::const_iterator
- it = table_[index].begin(); it != table_[index].end(); ++it) {
- ret.push_back(*it);
- }
- return ret;
- }
-
- //! @brief same as \c copyFrom(h)
- HashTableList& operator=(HashTableList const& h) {
- return copyFrom(h);
- }
-
- //! @brief same as \c add(h)
- HashTableList& operator+=(HashTableList const& h) {
- add(h);
- return *this;
- }
-
- //! @brief same as \c del(h)
- HashTableList& operator-=(HashTableList const& h) {
- del(h);
- return *this;
- }
-};
-
-} // meow
-
-#endif // dsa_HashTable_H__
diff --git a/meowpp/dsa/KD_Tree.h b/meowpp/dsa/KD_Tree.h
deleted file mode 100644
index e5a51dc..0000000
--- a/meowpp/dsa/KD_Tree.h
+++ /dev/null
@@ -1,303 +0,0 @@
-#ifndef dsa_KD_Tree_H__
-#define dsa_KD_Tree_H__
-
-#include "../utility.h"
-#include "../math/utility.h"
-
-#include <cstdlib>
-
-#include <vector>
-#include <algorithm>
-#include <queue>
-
-namespace meow {
-
-/*!
- * @brief \c k-dimension tree
- *
- * 全名k-dimension tree, 用來維護由\b N個K維度向量所成的集合,
- * 並可於該set中查找 \b 前i個離給定向量最接近的向量
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const |Vector |operator[] |(size_t \c n) |Scalar | 取得第 `n` 維度量 |
- * |const |Vector |operator< |(Vector \c v) |bool | 權重比較 |
- * |const |Scalar |operator* |(Scalar \c s) |Scalar | 相乘 |
- * |const |Scalar |operator+ |(Scalar \c s) |Scalar | 相加 |
- * |const |Scalar |operator- |(Scalar \c s) |Scalar | 相差 |
- * |const |Scalar |operator< |(Scalar \c s) |bool | 大小比較 |
- *
- * @note:
- * 此資料結構只有在 N >> 2 <sup>K</sup> 時才比較有優勢,
- * 當 K 逐漸變大時, 所花時間會跟暴搜沒兩樣
- *
- * @author cat_leopard
- */
-template<class Vector, class Scalar>
-class KD_Tree {
-private:
- struct Node {
- Vector vector_;
- ssize_t lChild_;
- ssize_t rChild_;
-
- Node(Vector v, ssize_t l, ssize_t r): vector_(v), lChild_(l), rChild_(r){
- }
- };
- typedef std::vector<Node> Nodes;
-
- class Sorter {
- private:
- Nodes const* nodes_;
- size_t cmp_;
- public:
- Sorter(Nodes const* nodes, size_t cmp):
- nodes_(nodes), cmp_(cmp){
- }
- bool operator()(size_t const& a, size_t const& b) const{
- if ((*nodes_)[a].vector_[cmp_] != (*nodes_)[b].vector_[cmp_]) {
- return ((*nodes_)[a].vector_[cmp_] < (*nodes_)[b].vector_[cmp_]);
- }
- return ((*nodes_)[a].vector_ < (*nodes_)[b].vector_);
- }
- };
- struct Answer {
- ssize_t index_;
- Scalar dist2_;
- //
- Answer(ssize_t index, Scalar dist2):
- index_(index), dist2_(dist2) {
- }
- Answer(Answer const& answer2):
- index_(answer2.index_), dist2_(answer2.dist2_) {
- }
- };
- class AnswerCompare {
- private:
- Nodes const* nodes_;
- bool cmpValue_;
- public:
- AnswerCompare(Nodes const* nodes, bool cmpValue):
- nodes_(nodes), cmpValue_(cmpValue) {
- }
- bool operator()(Answer const& a, Answer const& b) const {
- if (cmpValue_ == true && a.dist2_ == b.dist2_) {
- return ((*nodes_)[a.index_].vector_ < (*nodes_)[b.index_].vector_);
- }
- return (a.dist2_ < b.dist2_);
- }
- };
- typedef std::vector<Answer> AnswerV;
- typedef std::priority_queue<Answer, AnswerV, AnswerCompare> Answers;
- //
- const ssize_t kNIL_;
- //
- Nodes nodes_;
- size_t root_;
- bool needRebuild_;
- size_t dimension_;
- //
- Scalar distance2(Vector const& v1, Vector const& v2) const {
- Scalar ret(0);
- for(size_t i = 0; i < dimension_; i++){
- ret += squ(v1[i] - v2[i]);
- }
- return ret;
- }
- //
- void query(Vector const& v,
- size_t nearestNumber,
- AnswerCompare const& answerCompare,
- ssize_t index,
- int depth,
- std::vector<Scalar>& dist2Vector,
- Scalar dist2Minimum,
- Answers *out) const {
- if (index == kNIL_) return ;
- size_t cmp = depth % dimension_;
- ssize_t this_side, that_side;
- if (!(nodes_[index].vector_[cmp] < v[cmp])) {
- this_side = nodes_[index].lChild_;
- that_side = nodes_[index].rChild_;
- }else{
- this_side = nodes_[index].rChild_;
- that_side = nodes_[index].lChild_;
- }
- query(v, nearestNumber, answerCompare,
- this_side, depth + 1,
- dist2Vector, dist2Minimum,
- out);
- Answer my_ans(index, distance2(nodes_[index].vector_, v));
- if (out->size() < nearestNumber || answerCompare(my_ans, out->top())) {
- out->push(my_ans);
- if (out->size() > nearestNumber) out->pop();
- }
- Scalar dist2_old(dist2Vector[cmp]);
- dist2Vector[cmp] = squ(nodes_[index].vector_[cmp] - v[cmp]);
- Scalar dist2Minimum2(dist2Minimum + dist2Vector[cmp] - dist2_old);
- if (out->size() < nearestNumber || !(out->top().dist2_ < dist2Minimum)) {
- query(v, nearestNumber, answerCompare,
- that_side, depth + 1,
- dist2Vector, dist2Minimum2,
- out);
- }
- dist2Vector[cmp] = dist2_old;
- }
- ssize_t build(ssize_t beg,
- ssize_t end,
- std::vector<size_t>* orders,
- int depth) {
- if (beg > end) return kNIL_;
- size_t tmp_order = dimension_;
- size_t which_side = dimension_ + 1;
- ssize_t mid = (beg + end) / 2;
- size_t cmp = depth % dimension_;
- for (ssize_t i = beg; i <= mid; i++) {
- orders[which_side][orders[cmp][i]] = 0;
- }
- for (ssize_t i = mid + 1; i <= end; i++) {
- orders[which_side][orders[cmp][i]] = 1;
- }
- for (size_t i = 0; i < dimension_; i++) {
- if (i == cmp) continue;
- size_t left = beg, right = mid + 1;
- for (int j = beg; j <= end; j++) {
- size_t ask = orders[i][j];
- if(ask == orders[cmp][mid]) {
- orders[tmp_order][mid] = ask;
- }
- else if(orders[which_side][ask] == 1) {
- orders[tmp_order][right++] = ask;
- }
- else {
- orders[tmp_order][left++] = ask;
- }
- }
- for (int j = beg; j <= end; j++) {
- orders[i][j] = orders[tmp_order][j];
- }
- }
- nodes_[orders[cmp][mid]].lChild_ = build(beg, mid - 1, orders, depth + 1);
- nodes_[orders[cmp][mid]].rChild_ = build(mid + 1, end, orders, depth + 1);
- return orders[cmp][mid];
- }
-public:
- //! Custom Type: Vectors is \c std::vector<Vector>
- typedef typename std::vector<Vector> Vectors;
-
- //! @brief constructor, with dimension = 1
- KD_Tree(): kNIL_(-1), root_(kNIL_), needRebuild_(false), dimension_(1) {
- }
-
- //! @brief constructor, given dimension
- KD_Tree(size_t dimension):
- kNIL_(-1), root_(kNIL_), needRebuild_(false), dimension_(dimension) {
- }
-
- //! @brief destructor
- ~KD_Tree() {
- }
-
- /*!
- * @brief 將給定的Vector加到set中
- */
- void insert(Vector const& v) {
- nodes_.push_back(Node(v, kNIL_, kNIL_));
- needRebuild_ = true;
- }
-
- /*!
- * @brief 將給定的Vector從set移除
- */
- bool erase(Vector const& v) {
- for (size_t i = 0, I = nodes_.size(); i < I; i++) {
- if (nodes_[i] == v) {
- if (i != I - 1) {
- std::swap(nodes_[i], nodes_[I - 1]);
- }
- needRebuild_ = true;
- return true;
- }
- }
- return false;
- }
-
- /*!
- * @brief 檢查至今是否有 insert/erase 被呼叫來決定是否 \c rebuild()
- */
- void build(){
- if (needRebuild_) {
- forceBuild();
- }
- }
-
- /*!
- * @brief 重新建樹
- */
- void forceBuild() {
- std::vector<size_t> *orders = new std::vector<size_t>[dimension_ + 2];
- for (size_t j = 0; j < dimension_ + 2; j++) {
- orders[j].resize(nodes_.size());
- }
- for (size_t j = 0; j < dimension_; j++) {
- for (size_t i = 0, I = nodes_.size(); i < I; i++) {
- orders[j][i] = i;
- }
- std::sort(orders[j].begin(), orders[j].end(), Sorter(&nodes_, j));
- }
- root_ = build(0, (ssize_t)nodes_.size() - 1, orders, 0);
- delete [] orders;
- needRebuild_ = false;
- }
-
- /*!
- * @brief 查找
- *
- * 於set中找尋距離指定向量前 \c i 近的向量, 並依照由近而遠的順序排序.
- * 如果有兩個向量\c v1,v2 距離一樣, 且 \c cmp 為\c true , 則直接依照
- * \c v1<v2 來決定誰在前面. 最後回傳一陣列包含所有解.
- */
- Vectors query(Vector const& v,
- size_t nearestNumber,
- bool compareWholeVector) const {
- ((KD_Tree*)this)->build();
- AnswerCompare answer_compare(&nodes_, compareWholeVector);
- Answers answer_set(answer_compare);
- std::vector<Scalar> tmp(dimension_, 0);
- query(v, nearestNumber,
- answer_compare,
- root_, 0,
- tmp, Scalar(0),
- &answer_set);
- Vectors ret(answer_set.size());
- for (int i = (ssize_t)answer_set.size() - 1; i >= 0; i--) {
- ret[i] = nodes_[answer_set.top().index_].vector_;
- answer_set.pop();
- }
- return ret;
- }
-
- /*!
- * @brief 清空所有資料
- */
- void clear() {
- root_ = kNIL_;
- nodes_.clear();
- needRebuild_ = false;
- }
-
- /*!
- * @brief 清空所有資料並重新給定維度
- */
- void reset(size_t dimension) {
- clear();
- dimension_ = dimension;
- }
-};
-
-} // meow
-
-#endif // dsa_KD_Tree_H__
diff --git a/meowpp/dsa/MergeableHeap.h b/meowpp/dsa/MergeableHeap.h
deleted file mode 100644
index 91b8d8b..0000000
--- a/meowpp/dsa/MergeableHeap.h
+++ /dev/null
@@ -1,168 +0,0 @@
-#ifndef dsa_MergeableHeap_H__
-#define dsa_MergeableHeap_H__
-
-#include <cstdlib>
-#include <algorithm>
-
-namespace meow {
-
-/*!
- * @brief
- *
- * 一個用 \b 左偏樹 實作的 \c Maximum-Heap , 除了原本heap有的功能外,
- * 還支援 \c merge 功能
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const |Element |operator< |(Element \c b)|bool | 大小比較 |
- *
- * @note:
- * 假設現在有兩個MergeableHeap \c A 和 \c B, 則:
- * - 執行 \c A.merge(&B) 後 \c B 會變成空的
- * - 執行 \c B.moveTo(&A) 後 \c B 會變成空的, \c A 原本擁有的資料也會覆蓋掉
- *
- * @author cat_leopard
- */
-template<class Element>
-class MergeableHeap { // maximum-heap
-private:
- struct Node {
- Element value_;
- Node* lChild_;
- Node* rChild_;
- size_t weight_;
- Node(Element const& value):
- value_(value), lChild_(NULL), rChild_(NULL), weight_(1){
- }
- };
-
- Node* root_;
-
- void clear(Node* node) {
- if (node != NULL) {
- clear(node->lChild_);
- clear(node->rChild_);
- delete node;
- }
- }
- Node* dup(Node* node) {
- if (node == NULL) return NULL;
- Node* ret = new Node(node->value_);
- ret->lChild_ = dup(node->lChild_);
- ret->rChild_ = dup(node->rChild_);
- ret->weight_ = 1;
- ret->weight_ += (ret->lChild_ == NULL ? 0 : ret->lChild_->weight_);
- ret->weight_ += (ret->rChild_ == NULL ? 0 : ret->rChild_->weight_);
- return ret;
- }
- Node* merge(Node* left, Node* right) {
- if (left == NULL) return right;
- if (right == NULL) return left;
- if (left->value_ < right->value_) {
- std::swap(left, right);
- }
- left->rChild_ = merge(left->rChild_, right);
- size_t lw = (left->lChild_ == NULL ? 0 : left->lChild_->weight_);
- size_t rw = (left->rChild_ == NULL ? 0 : left->rChild_->weight_);
- if (lw < rw) {
- std::swap(left->lChild_, left->rChild_);
- }
- left->weight_ = 1 + lw + rw;
- return left;
- }
-public:
- //! @brief constructor
- MergeableHeap(): root_(NULL){
- }
-
- //! @brief constructor, 並且複製資料
- MergeableHeap(MergeableHeap const& heap2): root_(dup(heap2.root_)) {
- }
-
- //! @brief destructor
- ~MergeableHeap(){
- clear(root_);
- }
-
- //! @brief 複製資料
- MergeableHeap& copyFrom(MergeableHeap const& heap2) {
- delete root_;
- root_ = dup(heap2.root_);
- return *this;
- }
-
- /*!
- * @brief 將自己的資料丟給指定的heap, 從此自己一身空
- */
- void moveTo(MergeableHeap* heap2){
- heap2->clear();
- heap2->root_ = root_;
- root_ = NULL;
- }
-
- /*!
- * @brief 回傳最大的那個 Element
- */
- Element const& top() const {
- return root_->value_;
- }
-
- /*!
- * @brief 回傳資料個數
- */
- size_t size() const {
- return (root_ == NULL ? 0 : root_->weight_);
- }
-
- /*!
- * @brief 回傳是否為空
- */
- bool empty() const {
- return (size() == 0);
- }
-
- /*!
- * @brief 加入element
- */
- void push(Element const& value) {
- root_ = merge(root_, new Node(value));
- }
-
- /*!
- * @brief 將最大的element移除
- */
- void pop() {
- Node* l = root_->lChild_;
- Node* r = root_->rChild_;
- delete root_;
- root_ = merge(l, r);
- }
-
- /*!
- * 將資料清空
- */
- void clear() {
- clear(root_);
- root_ = NULL;
- }
-
- /*!
- * 將給定的MergeableHeap的資料統統加到自己身上並且清空該heap
- */
- void merge(MergeableHeap* heap2) {
- root_ = merge(root_, heap2->root_);
- heap2->root_ = NULL;
- }
-
- //! @brief same as \c copyFrom(heap2)
- MergeableHeap& operator=(MergeableHeap const& heap2) {
- return copyFrom(heap2);
- }
-};
-
-} // meow
-
-#endif // dsa_MergeableHeap_H__
diff --git a/meowpp/dsa/SegmentTree.h b/meowpp/dsa/SegmentTree.h
deleted file mode 100644
index 305c4c3..0000000
--- a/meowpp/dsa/SegmentTree.h
+++ /dev/null
@@ -1,194 +0,0 @@
-#ifndef dsa_SegmentTree_H__
-#define dsa_SegmentTree_H__
-
-#include "../math/utility.h"
-
-#include <vector>
-#include <algorithm>
-
-#include <cstdlib>
-
-namespace meow {
-/*!
- * @brief 中文名 \c 線段樹
- *
- * 維護一個陣列, 並且讓user可以有區間查詢, 區間修改的小東東
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const |Vector |operator[] |(size_t \c n) |Scalar | 取得第 `n` 維度量 |
- * |const |Vector |operator< |(Vector \c v) |bool | 權重比較 |
- * |const |Scalar |operator* |(Scalar \c s) |Scalar | 相乘 |
- * |const |Scalar |operator+ |(Scalar \c s) |Scalar | 相加 |
- * |const |Scalar |operator- |(Scalar \c s) |Scalar | 相差 |
- * |const |Scalar |operator< |(Scalar \c s) |bool | 大小比較 |
- * |const |Value |operator+ |(Value \c v) |Value | 相加(位移) |
- * |const |Value |operator* |(size_t \c n) |Value | 每個Value都一樣,
- * 長為 `n` 的區間的值|
- * |const |Value |operator{b}|(Value \c v) |Value | 區間合併後的值 |
- *
- * - 若要維護區間最小值, 即每次都是詢問範圍 `[a, b]` 的最小值, 則可以定義
- * - \c operator+ 為 '回傳相加值'
- * - \c operator* 為 '回傳*this'
- * - \c operator| 為 '回傳std::min(*this, v)'
- * - 若要維護區間最總和, 即每次都是詢問範圍 `[a, b]` 的總和, 則可以定義
- * - \c operator+ 為 '回傳相加值'
- * - \c operator* 為 '回傳(*this) * n'
- * - \c operator| 為 '回傳相加值'
- *
- * @author cat_leopard
- */
-template<class Value>
-class SegmentTree {
-private:
- struct Node {
- Value value_;
- Value offset_;
- bool sameFlage_;
- };
- //
- size_t size_;
- std::vector<Node> nodes_;
- //
- void update(size_t index, size_t size, Value const& value, bool override) {
- if (override) {
- nodes_[index].value_ = value * size;
- nodes_[index].offset_ = value;
- nodes_[index].sameFlage_ = true;
- }
- else {
- nodes_[index].value_ = nodes_[index].value_ + value * size;
- nodes_[index].offset_ = nodes_[index].offset_ + value;
- }
- }
- void update(size_t l, size_t r, size_t L, size_t R,
- size_t index, Value const& value,
- bool override) {
- if (l == L && r == R) {
- update(index, R - L + 1, value, override);
- return ;
- }
- size_t mid = (L + R) / 2;
- if (L < R) {
- update(index * 2 + 1, mid - L + 1,
- nodes_[index].offset_, nodes_[index].sameFlage_);
- update(index * 2 + 2, R - mid,
- nodes_[index].offset_, nodes_[index].sameFlage_);
- nodes_[index].offset_ = Value(0);
- nodes_[index].sameFlage_ = false;
- }
- if (r <= mid) {
- update(l, r, L ,mid, index * 2 + 1, value, override);
- }
- else if (mid + 1 <= l) {
- update(l, r, mid + 1,R, index*2 + 2, value, override);
- }
- else {
- update(l, mid , L, mid , index * 2 + 1, value, override);
- update( mid + 1, r, mid + 1, R, index * 2 + 2, value, override);
- }
- nodes_[index].value_ = (
- (nodes_[index * 2 + 1].value_ | nodes_[index * 2 + 2].value_)
- + nodes_[index].offset_
- );
- }
- Value query(size_t l, size_t r, size_t L, size_t R, size_t index) {
- if (l == L && r == R) return nodes_[index].value_;
- Value off = nodes_[index].offset_ * (r - l + 1);
- if (nodes_[index].sameFlage_) return off;
- size_t mid = (L + R) / 2;
- if (r <= mid) return query(l, r, L , mid, index * 2 + 1) + off;
- else if(mid + 1 <= l) return query(l, r, mid + 1, R, index * 2 + 2) + off;
- else{
- return ( query(l, mid , L, mid , index * 2 + 1)
- | query( mid + 1, r, mid + 1, R, index * 2 + 2)
- ) + off;
- }
- }
- //
- bool rangeCorrect(ssize_t* first, ssize_t* last) const {
- if (*last < *first || *last < 0 || (ssize_t)size_ - 1 < *first)
- return false;
- *first = inRange((ssize_t)0, (ssize_t)size_ - 1, *first);
- *last = inRange((ssize_t)0, (ssize_t)size_ - 1, *last );
- return true;
- }
-public:
- //! @brief constructor
- SegmentTree() {
- reset(1);
- }
-
- //! @brief constructor, with \c size gived
- SegmentTree(size_t size) {
- reset(size);
- }
-
- //! @brief constructor, 並且複製資料
- SegmentTree(SegmentTree const& tree2):
- size_(tree2.size_), nodes_(tree2.nodes_) {
- }
-
- /*!
- * @brief 複製
- */
- SegmentTree copyFrom(SegmentTree const& b) {
- size_ = b.size_;
- nodes_ = b.nodes_;
- return *this;
- }
-
- /*!
- * @brief 回傳size
- */
- size_t size() const {
- return size_;
- }
-
- /*!
- * @brief 將資料清空且設定維護範圍是 \c 0~size-1
- */
- void reset(size_t size){
- size_ = std::max(size, (size_t)1);
- nodes_.resize(size * 4);
- nodes_[0].sameFlage_ = true;
- nodes_[0].value_ = Value(0);
- nodes_[0].offset_ = Value(0);
- }
-
- /*!
- * @brief 回傳區間 \c [first,last] (邊界都含) 的區間值
- */
- Value query(ssize_t first, ssize_t last) const {
- if (rangeCorrect(&first, &last) == false) return Value();
- return ((SegmentTree*)this)->query(first, last, 0, size_ - 1, 0);
- }
-
- /*!
- * @brief 將區間 \c [first,last] 全部都設定成 \c value
- */
- void override(ssize_t first, ssize_t last, Value const& value) {
- if (rangeCorrect(&first, &last) == false) return ;
- update(first, last, 0, size_ - 1, 0, value, true);
- }
-
- /*!
- * @brief 將區間 \c [first,last] 全部都加上 \c delta
- */
- void offset(ssize_t first, ssize_t last, Value const& delta) {
- if (rangeCorrect(&first, &last) == false) return ;
- update(first, last, 0, size_ - 1, 0, delta, false);
- }
-
- //! @brief same as copyFrom(b)
- SegmentTree& operator=(SegmentTree const& b) {
- return copyFrom(b);
- }
-};
-
-} // meow
-
-#endif // dsa_SegmentTree_H__
diff --git a/meowpp/dsa/SplayTree.h b/meowpp/dsa/SplayTree.h
deleted file mode 100644
index 483b965..0000000
--- a/meowpp/dsa/SplayTree.h
+++ /dev/null
@@ -1,1151 +0,0 @@
-#ifndef dsa_SplayTree_h__
-#define dsa_SplayTree_h__
-
-#include <cstdlib>
-#include <utility>
-
-#include "../math/utility.h"
-
-namespace meow {
-
-/*!
- * @brief
- *
- * 是一種神乎其技的資料結構, 維護一堆 Key->Value . 並且支援
- * 一些 \c std::map 難以快速實踐的操作, 如 \c split , \c merge , \c keyOffset
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const |Key |operator+ |(Key \c k) | Key |相加 |
- * |const |Key |operator< |(Key \c k) | bool |大小比較 |
- * | |Key |operator= |(Key \c k) | Key |copy oper |
- * | |Key |Key |(int \c n) | |構子,\c n 永遠是0 |
- * | |Value | Value |( ) | |建構子 |
- *
- * @note:
- * -假設現在有兩個SplayTree `A` 和 `B`, 則:
- * -執行 `B.moveTo(&A)` 後 `B` 會變成空的, `A` 原本擁有的資料也會覆蓋掉
- * -行 `A.merge(&B)` 或 `A.mergeAfter(&B)` 後
- * 如果檢查發現確實可以merge, 則之後 `B` 會變成空的
- *
- * @author cat_leopard
- */
-template<class Key, class Value>
-class SplayTree {
-private:
- struct Node {
- Key key_;
- Key keyOffset_;
- Value value_;
- size_t size_;
- Node* parent_;
- Node* child_[2];
-
- Node(Key const& key, Value const& value):
- key_(key), keyOffset_(0), value_(value) {
- size_ = 1;
- parent_ = NULL;
- child_[0] = NULL;
- child_[1] = NULL;
- }
- //
- void keyOffset(Key const& delta) {
- key_ = key_ + delta;
- keyOffset_ = keyOffset_ + delta;
- }
- void syncDown() const {
- for (size_t i = 0; i < 2; i++) {
- if (child_[i] == NULL) continue;
- child_[i]->keyOffset(keyOffset_);
- }
- ((Node*)this)->keyOffset_ = Key(0);
- }
- void syncUp() const {
- ((Node*)this)->size_ = 1;
- for (size_t i = 0; i < 2; i++) {
- if (child_[i] == NULL) continue;
- ((Node*)this)->size_ += child_[i]->size_;
- }
- }
- };
-
- Node* root_;
-
- //! @brief 指定左子or右子, 連接parent<--->child
- void connect(Node const* parent, size_t left_right, Node const* child) const {
- Node* p = (Node*)parent;
- Node* c = (Node*)child;
- if (p != NULL) p->child_[left_right] = c;
- if (c != NULL) c->parent_ = p;
- }
-
- //! @brief 一路往上轉
- Node const* splay(Node const* node) const {
- if (node != NULL && node->parent_ != NULL) {
- for (const Node *g_grand, *grand, *parent, *child = node; ; ) {
- g_grand = (grand = parent = child->parent_)->parent_;
- size_t pc = (parent->child_[0] == child ? 0 : 1);
- connect(parent, pc, child->child_[!pc]);
- connect(child , !pc, parent);
- if (g_grand != NULL) {
- g_grand = (grand = g_grand)->parent_;
- size_t gp = (grand->child_[0] == parent ? 0 : 1);
- Node const* who = (pc == gp ? parent : child);
- connect(grand, gp, who->child_[!gp]);
- connect(who , !gp, grand);
- grand->syncUp();
- }
- parent->syncUp();
- child ->syncUp();
- if (g_grand == NULL) {
- connect(NULL, 0, child);
- break;
- }
- connect(g_grand, (g_grand->child_[0] == grand ? 0 : 1), child);
- }
- }
- return (((SplayTree*)this)->root_ = (Node*)node);
- }
-
- void clear(Node* node) {
- if (node == NULL) return ;
- clear(node->child_[0]);
- clear(node->child_[1]);
- delete node;
- }
-
- Node* dup(Node* node2) {
- if (node2 == NULL) return NULL;
- node2->syncDown();
- Node* node = new Node(node2->key_, node2->value_);
- connect(node, 0, dup(node2->child_[0]));
- connect(node, 1, dup(node2->child_[1]));
- node->syncUp();
- return node;
- }
-
- Node const* findKey(Node const* node, Key const& key) const {
- Node const* ret = node;
- while (node != NULL) {
- node->syncDown();
- ret = node;
- if (!(key < node->key_)) {
- if (!(node->key_< key)) break;
- node = node->child_[1];
- }
- else {
- node = node->child_[0];
- }
- }
- return ret;
- }
- Node const* findMinMax(Node const* node, bool minimum) const {
- Node const* ret = node;
- for (int i = minimum ? 0 : 1; node != NULL; node = node->child_[i]) {
- node->syncDown();
- ret = node;
- }
- return ret;
- }
- Node const* findOrder(Node const* node, size_t order) const {
- Node const* ret = node;
- while (node != NULL) {
- node->syncDown();
- ret = node;
- size_t ord = 1 + (node->child_[0] == NULL ? 0 : node->child_[0]->size_);
- if (ord == order) return ret;
- else if(ord < order){ node = node->child_[1]; order -= ord; }
- else { node = node->child_[0]; }
- }
- return ret;
- }
-
- void split(Node* root, Node** left, Node** right) {
- if (root == NULL) { *left = NULL; *right = NULL; return ; }
- root->syncDown();
- *left = root;
- *right = root->child_[1];
- if (*right != NULL) {
- (*left )->child_[1] = NULL;
- (*right)->parent_ = NULL;
- (*left )->syncUp();
- }
- }
- Node* merge(Node* left, Node* right) {
- if (left == NULL) return right;
- if (right == NULL) return left ;
- left->syncDown();
- connect(left, 1, right);
- left->syncUp();
- return left;
- }
-public:
- /*!
- * @brief 類似 \c stl 的 \c iterator ,不過這邊叫做\c Element
- *
- * 用來當作回傳資料的媒介
- */
- class Element{
- private:
- typedef std::pair<Key const&, Value&> Entry;
- Entry* entry_;
- Node * node_;
- //
- void reset(Node* node) {
- node_ = node;
- delete entry_;
- entry_ = (node == NULL ? NULL : new Entry(node->key_, node->value_));
- }
- public:
- Element(): entry_(NULL), node_(NULL) {
- }
- Element(Node* node): entry_(NULL), node_(NULL) {
- reset(node);
- }
- Element(Element const& element2): entry_(NULL), node_(NULL) {
- reset(element2.node_);
- }
- ~Element(){
- delete entry_;
- }
-
- //! @brief 複製資料
- Element& copyFrom(Element const& e) {
- reset(e.node_);
- return *this;
- }
-
- //! @brief 比對兩者是否為指向同一個Entry
- bool same(Element const& e2) const {
- return (node_ == e2.node_);
- }
-
- //! @brief same as copyFrom
- Element& operator=(Element const& e2) {
- return copyFrom(e2);
- }
-
- //! @brief 重導至\c std::pair<Key \c const&,\c Value&>*
- Entry* operator->() {
- return entry_;
- }
-
- //! @brief 重導至\c std::pair<Key \c const&,\c Value&>&
- Entry& operator*() {
- return *entry_;
- }
-
- //! @brief same as \c same(e2)
- bool operator==(Element const& e2) const{
- return same(e2);
- }
-
- //! @brief same as \c !same(e2)
- bool operator!=(Element const& e2) const{
- return !same(e2);
- }
- };
-
- //! @brief constructor
- SplayTree(): root_(NULL) {
- }
-
- //! @brief constructor, 複製資料
- SplayTree(SplayTree const& tree2):
- root_(dup((Node*)(tree2.root_))) {
- }
-
- //! @brief destructor
- ~SplayTree(){
- clear(root_);
- }
-
- /*!
- * @brief 複製資料
- */
- SplayTree& copyFrom(SplayTree const& tree2) {
- clear(root_);
- root_ = dup((Node*)(tree2.root_));
- return *this;
- }
-
- /*!
- * @brief 將資料都丟到 \c tree2 身上, 並且清空自己
- */
- void moveTo(SplayTree* tree2) {
- tree2->clear();
- tree2->root_ = root_;
- root_ = NULL;
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k <= 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element lowerBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || !(root_->key_ < key)) return Element(root_);
- if (root_->child_[1] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[1], true));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k < 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element upperBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || key < root_->key_) return Element(root_);
- if (root_->child_[1] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[1], true));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k >= 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element rLowerBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || !(key < root_->key_)) return Element(root_);
- if (root_->child_[0] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[0], false));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k > 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element rUpperBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || root_->key_ < key) return Element(root_);
- if (root_->child_[0] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[0], false));
- return Element(root_);
- }
-
- /*!
- * @brief 找出 Key= \c k 的Elemenet 並回傳. 找不到的話回傳 \c this->end()
- */
- Element find(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ != NULL && !(key < root_->key_) && !(root_->key_ < key)) {
- return Element(root_);
- }
- return Element(NULL);
- }
-
- /*!
- * @brief 將Elements依照Key由小到大排序, 回傳第 \c ord 個Element (由0算起).
- *
- * 其中如果 \c ord>N-1, 則會回傳 \c this->last()
- */
- Element order(size_t order) const {
- if (root_ == NULL || order >= root_->size_) return Element(NULL);
- splay(findOrder(root_, order + 1));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳Key最小的Element, 如果SplayTree為空, 則回傳 \c this->end()
- */
- Element first() const {
- splay(findMinMax(root_, true));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳Key最大的Element, 如果SplayTree為空, 則回傳 \c this->end()
- */
- Element last() const {
- splay(findMinMax(root_, false));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳一個指向NULL的Element,
- *
- * 以供 \c find ,\c order ,\c first ,\c last 等判斷是否有找到相對應的Element
- */
- Element end() const {
- return Element(NULL);
- }
-
- /*!
- * @brief 回傳資料個數
- */
- size_t size() const {
- return (root_ == NULL ? 0 : root_->size_);
- }
-
- /*!
- * @brief 回傳是否為空
- */
- bool empty() const{
- return (size() == 0);
- }
-
- /*!
- * @brief 清空
- */
- void clear() {
- clear(root_);
- root_ = NULL;
- }
-
- /*!
- * @brief 插入一組\c (Key ---> \c Value)
- *
- * 檢查是否已有Element的Key 為 \c key, 若有則回傳 \c false , 否則將
- * 一個 (Key -> Value) = (\c key -> \c value)的Element加入, 並回傳 \c true
- */
- bool insert(Key const& key, Value const& value) {
- if (root_ == NULL) {
- root_ = new Node(key, value);
- }
- else {
- Node* parent = (Node*)findKey(root_, key);
- if (!(parent->key_ < key) && !(key < parent->key_)) {
- splay(parent);
- return false;
- }
- Node* new_node = new Node(key, value);
- connect(parent, (parent->key_ < key ? 1 : 0), new_node);
- parent->syncUp();
- splay(new_node);
- }
- return true;
- }
-
- /*!
- * @brief 刪除一組資料
- *
- * 檢查是否已有Element的Key 為 \c key, 若有則刪除之, 並回傳 \c true,
- * 否則則回傳 \c false
- */
- bool erase(Key const& key) {
- if (root_ == NULL) return false;
- Node* body = (Node*)findKey(root_, key);
- if (body->key_ < key || key < body->key_) {
- splay(body);
- return false;
- }
- Node* ghost;
- if (body->child_[1] == NULL) {
- ghost = body->child_[0];
- if (ghost != NULL) ghost->syncDown();
- }
- else {
- ghost = (Node*)findMinMax(body->child_[1], true);
- connect(ghost, 0, body->child_[0]);
- if (ghost != body->child_[1]) {
- connect(ghost->parent_, 0, ghost->child_[1]);
- connect(ghost, 1, body->child_[1]);
- for (Node* a = ghost->parent_; a != ghost; a = a->parent_)
- a->syncUp();
- }
- ghost->syncUp();
- }
- Node* parent = body->parent_;
- connect(parent, parent != NULL && parent->child_[0] == body ? 0 : 1, ghost);
- delete body;
- splay(ghost != NULL ? ghost : parent);
- return true;
- }
-
- /*!
- * @brief 將所有Element的Key同加上 \c delta
- */
- void keyOffset(Key const& delta) {
- if (root_ != NULL) {
- root_->keyOffset(delta);
- }
- }
-
- /*!
- * @brief 將\c tree2 清空, 再將所有Key > \c upper_bound 的Element都丟過去
- */
- void splitOut(Key const& upper_bound, SplayTree* right) {
- right->clear();
- if (rLowerBound(upper_bound) != end()) {
- split(root_, &root_, &(right->root_));
- }
- else {
- right->root_ = root_;
- root_ = NULL;
- }
- }
-
- /*!
- * @brief 合併
- *
- * 檢查是否自己中的 Key 都小於 \c tree2 中的Key, 是的話把 \c tree2`
- * 中的 Element 都搬到自己這, 同時清空 \c tree2 , 否則回傳 \c false
- */
- bool mergeAfter(SplayTree* tree2) {
- if (root_ == NULL || tree2->root_ == NULL ||
- last()->first < tree2->first()->first) {
- root_ = merge(root_, tree2->root_);
- tree2->root_ = NULL;
- return true;
- }
- return false;
- }
-
- /*!
- * @brief 合併
- *
- * 檢查是否自己中的 Key 都小於 \c tree2 中的Key, 或是完全相反,
- * 是的話把 \c tree2`中的 Element 都搬到自己這,
- * 同時清空 \c tree2 , 否則回傳 \c false
- */
- bool merge(SplayTree* tree2) {
- if (root_ == NULL || tree2->root_ == NULL ||
- last()->first < tree2->first()->first) {
- root_ = merge(root_, tree2->root_);
- }
- else if(tree2->last()->first < first()->first) {
- root_ = merge(tree2->root_, root_);
- }
- else {
- return false;
- }
- tree2->root_ = NULL;
- return true;
- }
-
- /*!
- * @brief 就像\c stl::map::operator[]
- *
- * 會先檢查是否已有Element的Key 為 \c key, 若有則回傳相對應的Value的Reference
- * 否則先執行 \c insert(key,Value()) 再回傳相對應的Reference
- */
- Value& operator[](Key const& key) {
- if (find(key) == end()) insert(key, Value());
- return root_->value_;
- }
-
- //! @brief same as \c copyFrom(tree2)
- SplayTree& operator=(SplayTree const& tree2) {
- return copyFrom(tree2);
- }
-};
-
-/*!
- * @brief
- *
- * 基本上跟SplayTree一樣, 不過這邊結合線段樹, 多了區間操作
- * (線段樹相關operator定義請見 \c SegmentTree )
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const |Key |operator+ |(Key \c k) | Key |相加 |
- * |const |Key |operator< |(Key \c k) | bool |大小比較 |
- * | |Key |operator= |(Key \c k) | Key |copy oper |
- * | |Key |Key |(int \c n) | |構子,\c n 永遠是0 |
- * | |Value | Value |( ) | |建構子 |
- *
- * @note:
- * -假設現在有兩個SplayTree `A` 和 `B`, 則:
- * -執行 `B.moveTo(&A)` 後 `B` 會變成空的, `A` 原本擁有的資料也會覆蓋掉
- * -行 `A.merge(&B)` 或 `A.mergeAfter(&B)` 後
- * 如果檢查發現確實可以merge, 則之後 `B` 會變成空的
- *
- * @author cat_leopard
- */
-template<class Key, class Value>
-class SplayTree_Range {
-private:
- struct Node {
- Value valueOffset_;
- Value range_;
- Key key_;
- Key keyOffset_;
- Value value_;
- bool same_;
- size_t size_;
- Node* parent_;
- Node* child_[2];
-
- Node(Key const& key, Value const& value):
- valueOffset_(0), range_(value),
- key_(key), keyOffset_(0), value_(value) {
- same_ = false;
- size_ = 1;
- parent_ = NULL;
- child_[0] = NULL;
- child_[1] = NULL;
- }
- //
- void keyOffset(Key const& delta) {
- key_ = key_ + delta;
- keyOffset_ = keyOffset_ + delta;
- }
- void valueUpdate(Value const& delta, bool over) {
- if(over) {
- value_ = delta * size_;
- valueOffset_ = delta;
- range_ = delta * size_;
- same_ = true;
- }
- else {
- value_ = value_ + delta * size_;
- valueOffset_ = valueOffset_ + delta;
- range_ = range_ + delta * size_;
- }
- }
- void syncDown() const {
- for (size_t i = 0; i < 2; i++) {
- if (child_[i] == NULL) continue;
- child_[i]->keyOffset(keyOffset_);
- child_[i]->valueUpdate(valueOffset_, same_);
- }
- ((Node*)this)->keyOffset_ = Key(0);
- ((Node*)this)->valueOffset_ = Value(0);
- ((Node*)this)->same_ = false;
- }
- void syncUp() const {
- ((Node*)this)->size_ = 1;
- Value* v[3] = {&(((Node*)this)->value_), NULL, NULL};
- size_t vct = 1;
- for (size_t i = 0; i < 2; i++) {
- if (child_[i] == NULL) continue;
- ((Node*)this)->size_ += child_[i]->size_;
- v[vct++] = &(child_[i]->range_);
- }
- if (vct == 1) ((Node*)this)->range_ = (*v[0]);
- else if(vct == 2) ((Node*)this)->range_ = (*v[0]) | (*v[1]);
- else ((Node*)this)->range_ = (*v[0]) | (*v[1]) | (*v[2]);
- }
- };
-
- Node* root_;
-
- //! @brief 指定左子or右子, 連接parent<--->child
- void connect(Node const* parent, size_t left_right, Node const* child) const {
- Node* p = (Node*)parent;
- Node* c = (Node*)child;
- if (p != NULL) p->child_[left_right] = c;
- if (c != NULL) c->parent_ = p;
- }
-
- //! @brief 一路往上轉
- Node const* splay(Node const* node) const {
- if (node != NULL && node->parent_ != NULL) {
- for (const Node *g_grand, *grand, *parent, *child = node; ; ) {
- g_grand = (grand = parent = child->parent_)->parent_;
- size_t pc = (parent->child_[0] == child ? 0 : 1);
- connect(parent, pc, child->child_[!pc]);
- connect(child , !pc, parent);
- if (g_grand != NULL) {
- g_grand = (grand = g_grand)->parent_;
- size_t gp = (grand->child_[0] == parent ? 0 : 1);
- Node const* who = (pc == gp ? parent : child);
- connect(grand, gp, who->child_[!gp]);
- connect(who , !gp, grand);
- grand->syncUp();
- }
- parent->syncUp();
- child ->syncUp();
- if (g_grand == NULL) {
- connect(NULL, 0, child);
- break;
- }
- connect(g_grand, (g_grand->child_[0] == grand ? 0 : 1), child);
- }
- }
- return (((SplayTree_Range*)this)->root_ = (Node*)node);
- }
-
- void clear(Node* node) {
- if (node == NULL) return ;
- clear(node->child_[0]);
- clear(node->child_[1]);
- delete node;
- }
-
- Node* dup(Node* node2) {
- if (node2 == NULL) return NULL;
- node2->syncDown();
- Node* node = new Node(node2->key_, node2->value_);
- connect(node, 0, dup(node2->child_[0]));
- connect(node, 1, dup(node2->child_[1]));
- node->syncUp();
- return node;
- }
-
- Node const* findKey(Node const* node, Key const& key) const {
- Node const* ret = node;
- while (node != NULL) {
- node->syncDown();
- ret = node;
- if (!(key < node->key_)) {
- if (!(node->key_< key)) break;
- node = node->child_[1];
- }
- else {
- node = node->child_[0];
- }
- }
- return ret;
- }
- Node const* findMinMax(Node const* node, bool minimum) const {
- Node const* ret = node;
- for (int i = minimum ? 0 : 1; node != NULL; node = node->child_[i]) {
- node->syncDown();
- ret = node;
- }
- return ret;
- }
- Node const* findOrder(Node const* node, size_t order) const {
- Node const* ret = node;
- while (node != NULL) {
- node->syncDown();
- ret = node;
- size_t ord = 1 + (node->child_[0] == NULL ? 0 : node->child_[0]->size_);
- if (ord == order) return ret;
- else if(ord < order){ node = node->child_[1]; order -= ord; }
- else { node = node->child_[0]; }
- }
- return ret;
- }
-
- void split(Node* root, Node** left, Node** right) {
- if (root == NULL) { *left = NULL; *right = NULL; return ; }
- root->syncDown();
- *left = root;
- *right = root->child_[1];
- if (*right != NULL) {
- (*left )->child_[1] = NULL;
- (*right)->parent_ = NULL;
- (*left )->syncUp();
- }
- }
- Node* merge(Node* left, Node* right) {
- if (left == NULL) return right;
- if (right == NULL) return left ;
- left->syncDown();
- connect(left, 1, right);
- left->syncUp();
- return left;
- }
-public:
- /*!
- * @brief 類似 \c stl 的 \c iterator ,不過這邊叫做\c Element
- *
- * 用來當作回傳資料的媒介
- */
- class Element{
- private:
- typedef std::pair<Key const&, Value&> Entry;
- Entry* entry_;
- Node * node_;
- //
- void reset(Node* node) {
- node_ = node;
- delete entry_;
- entry_ = (node == NULL ? NULL : new Entry(node->key_, node->value_));
- }
- public:
- Element(): entry_(NULL), node_(NULL) {
- }
- Element(Node* node): entry_(NULL), node_(NULL) {
- reset(node);
- }
- Element(Element const& element2): entry_(NULL), node_(NULL) {
- reset(element2.node_);
- }
- ~Element(){
- delete entry_;
- }
-
- //! @brief 複製資料
- Element& copyFrom(Element const& e) {
- reset(e.node_);
- return *this;
- }
-
- //! @brief 比對兩者是否為指向同一個Entry
- bool same(Element const& e2) const {
- return (node_ == e2.node_);
- }
-
- //! @brief same as copyFrom
- Element& operator=(Element const& e2) {
- return copyFrom(e2);
- }
-
- //! @brief 重導至\c std::pair<Key \c const&,\c Value&>*
- Entry* operator->() {
- return entry_;
- }
-
- //! @brief 重導至\c std::pair<Key \c const&,\c Value&>&
- Entry& operator*() {
- return *entry_;
- }
-
- //! @brief same as \c same(e2)
- bool operator==(Element const& e2) const{
- return same(e2);
- }
-
- //! @brief same as \c !same(e2)
- bool operator!=(Element const& e2) const{
- return !same(e2);
- }
- };
-
- //! @brief constructor
- SplayTree_Range(): root_(NULL) {
- }
-
- //! @brief constructor, 複製資料
- SplayTree_Range(SplayTree_Range const& tree2):
- root_(dup((Node*)(tree2.root_))) {
- }
-
- //! @brief destructor
- ~SplayTree_Range() {
- clear(root_);
- }
-
- /*!
- * @brief 複製資料
- */
- SplayTree_Range& copyFrom(SplayTree_Range const& tree2) {
- clear(root_);
- root_ = dup((Node*)(tree2.root_));
- return *this;
- }
-
- /*!
- * @brief 將資料都丟到 \c tree2 身上, 並且清空自己
- */
- void moveTo(SplayTree_Range* tree2) {
- tree2->clear();
- tree2->root_ = root_;
- root_ = NULL;
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k <= 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element lowerBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || !(root_->key_ < key)) return Element(root_);
- if (root_->child_[1] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[1], true));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k < 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element upperBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || key < root_->key_) return Element(root_);
- if (root_->child_[1] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[1], true));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k >= 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element rLowerBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || !(key < root_->key_)) return Element(root_);
- if (root_->child_[0] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[0], false));
- return Element(root_);
- }
-
- /*!
- * @brief 找出第一個(最小的) Element且 \c k > 它的 Key, 並且回傳之.
- *
- * 找不到的話回傳 \c this->end()
- */
- Element rUpperBound(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ == NULL || root_->key_ < key) return Element(root_);
- if (root_->child_[0] == NULL) return Element(NULL);
- splay(findMinMax(root_->child_[0], false));
- return Element(root_);
- }
-
- /*!
- * @brief 找出 Key= \c k 的Elemenet 並回傳. 找不到的話回傳 \c this->end()
- */
- Element find(Key const& key) const {
- splay(findKey(root_, key));
- if (root_ != NULL && !(key < root_->key_) && !(root_->key_ < key)) {
- return Element(root_);
- }
- return Element(NULL);
- }
-
- /*!
- * @brief 將Elements依照Key由小到大排序, 回傳第 \c ord 個Element (由0算起).
- *
- * 其中如果 \c ord>N-1, 則會回傳 \c this->last()
- */
- Element order(size_t order) const {
- if (root_ == NULL || order >= root_->size_) return Element(NULL);
- splay(findOrder(root_, order + 1));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳Key最小的Element, 如果SplayTree為空, 則回傳 \c this->end()
- */
- Element first() const {
- splay(findMinMax(root_, true));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳Key最大的Element, 如果SplayTree為空, 則回傳 \c this->end()
- */
- Element last() const {
- splay(findMinMax(root_, false));
- return Element(root_);
- }
-
- /*!
- * @brief 回傳一個指向NULL的Element,
- *
- * 以供 \c find ,\c order ,\c first ,\c last 等判斷是否有找到相對應的Element
- */
- Element end() const {
- return Element(NULL);
- }
-
- /*!
- * @brief 回傳資料個數
- */
- size_t size() const {
- return (root_ == NULL ? 0 : root_->size_);
- }
-
- /*!
- * @brief 回傳是否為空
- */
- bool empty() const{
- return (size() == 0);
- }
-
- /*!
- * @brief 查找
- *
- * 詢問目前整個range的值
- */
- Value query() const {
- if (root_ == NULL) return Value(0);
- return root_->range_;
- }
-
- /*!
- * @brief 查找
- *
- * 詢問給定range的值
- */
- Value query(Key const& first, Key const& last) const {
- SplayTree_Range* self = (SplayTree_Range*)this;
- Node* tmp;
- rUpperBound(first);
- self->split(self->root_, &tmp, &(self->root_));
- upperBound(last);
- Value ret(0);
- if (root_ != NULL && root_->child_[0] != NULL) {
- ret = root_->child_[0]->range_;
- }
- self->root_ = self->merge(tmp, self->root_);
- return ret;
- }
-
- /*!
- * @brief 清空
- */
- void clear() {
- clear(root_);
- root_ = NULL;
- }
-
- /*!
- * @brief 插入一組\c (Key ---> \c Value)
- *
- * 檢查是否已有Element的Key 為 \c key, 若有則回傳 \c false , 否則將
- * 一個 (Key -> Value) = (\c key -> \c value)的Element加入, 並回傳 \c true
- */
- bool insert(Key const& key, Value const& value) {
- if (root_ == NULL) {
- root_ = new Node(key, value);
- }
- else {
- Node* parent = (Node*)findKey(root_, key);
- if (!(parent->key_ < key) && !(key < parent->key_)) {
- splay(parent);
- return false;
- }
- Node* new_node = new Node(key, value);
- connect(parent, (parent->key_ < key ? 1 : 0), new_node);
- parent->syncUp();
- splay(new_node);
- }
- return true;
- }
-
- /*!
- * @brief 刪除一組資料
- *
- * 檢查是否已有Element的Key 為 \c key, 若有則刪除之, 並回傳 \c true,
- * 否則則回傳 \c false
- */
- bool erase(Key const& key) {
- if (root_ == NULL) return false;
- Node* body = (Node*)findKey(root_, key);
- if (body->key_ < key || key < body->key_) {
- splay(body);
- return false;
- }
- Node* ghost;
- if (body->child_[1] == NULL) {
- ghost = body->child_[0];
- if (ghost != NULL) ghost->syncDown();
- }
- else {
- ghost = (Node*)findMinMax(body->child_[1], true);
- connect(ghost, 0, body->child_[0]);
- if (ghost != body->child_[1]) {
- connect(ghost->parent_, 0, ghost->child_[1]);
- connect(ghost, 1, body->child_[1]);
- for (Node* a = ghost->parent_; a != ghost; a = a->parent_)
- a->syncUp();
- }
- ghost->syncUp();
- }
- Node* parent = body->parent_;
- connect(parent, parent != NULL && parent->child_[0] == body ? 0 : 1, ghost);
- delete body;
- splay(ghost != NULL ? ghost : parent);
- return true;
- }
-
- /*!
- * @brief 將所有Element的Key同加上 \c delta
- */
- void keyOffset(Key const& delta) {
- if (root_ != NULL) {
- root_->keyOffset(delta);
- }
- }
-
- /*!
- * @brief 將所有Element的Value同加上 \c delta
- */
- void valueOffset(Value const& delta){
- if (root_ != NULL) {
- root_->valueUpdate(delta, false);
- }
- }
-
- /*!
- * @brief 將所有Element的Value全部設定成\c value
- */
- void valueOverride(Value const& value){
- if(root_ != NULL){
- root_->valueUpdate(value, true);
- }
- }
-
- /*!
- * @brief 將\c tree2 清空, 再將所有Key > \c upper_bound 的Element都丟過去
- */
- void splitOut(Key const& upper_bound, SplayTree_Range* right) {
- right->clear();
- if (rLowerBound(upper_bound) != end()) {
- split(root_, &root_, &(right->root_));
- }
- else {
- right->root_ = root_;
- root_ = NULL;
- }
- }
-
- /*!
- * @brief 合併
- *
- * 檢查是否自己中的 Key 都小於 \c tree2 中的Key, 是的話把 \c tree2`
- * 中的 Element 都搬到自己這, 同時清空 \c tree2 , 否則回傳 \c false
- */
- bool mergeAfter(SplayTree_Range* tree2) {
- if (root_ == NULL || tree2->root_ == NULL ||
- last()->first < tree2->first()->first) {
- root_ = merge(root_, tree2->root_);
- tree2->root_ = NULL;
- return true;
- }
- return false;
- }
-
- /*!
- * @brief 合併
- *
- * 檢查是否自己中的 Key 都小於 \c tree2 中的Key, 或是完全相反,
- * 是的話把 \c tree2`中的 Element 都搬到自己這,
- * 同時清空 \c tree2 , 否則回傳 \c false
- */
- bool merge(SplayTree_Range* tree2) {
- if (root_ == NULL || tree2->root_ == NULL ||
- last()->first < tree2->first()->first) {
- root_ = merge(root_, tree2->root_);
- }
- else if(tree2->last()->first < first()->first) {
- root_ = merge(tree2->root_, root_);
- }
- else {
- return false;
- }
- tree2->root_ = NULL;
- return true;
- }
-
- /*!
- * @brief 就像\c stl::map::operator[]
- *
- * 會先檢查是否已有Element的Key 為 \c key, 若有則回傳相對應的Value的Reference
- * 否則先執行 \c insert(key,Value()) 再回傳相對應的Reference
- */
- Value& operator[](Key const& key) {
- if (find(key) == end()) insert(key, Value());
- return root_->value_;
- }
-
- //! @brief same as \c copyFrom(tree2)
- SplayTree_Range& operator=(SplayTree_Range const& tree2){
- return copyFrom(tree2);
- }
-};
-
-} // meow
-
-#endif // dsa_SplayTree_h__
diff --git a/meowpp/dsa/VP_Tree.h b/meowpp/dsa/VP_Tree.h
deleted file mode 100644
index 3d85327..0000000
--- a/meowpp/dsa/VP_Tree.h
+++ /dev/null
@@ -1,337 +0,0 @@
-#ifndef dsa_VP_Tree_H__
-#define dsa_VP_Tree_H__
-
-#include "../math/utility.h"
-
-#include <cstdlib>
-
-#include <list>
-#include <vector>
-#include <stack>
-#include <queue>
-
-namespace meow {
-
-/*!
- * @brief 跟KD_Tree很像歐
- *
- * \c VP_Tree 用來維護由 \b N個K維度向量所成的集合 ,
- * 並可於該set中查找 \b 前i個離給定向量最接近的向量* .
- * 不像 \c KD_Tree 二分樹每次都選擇一個維度去分, 分成小的跟大的,
- * \c VP_Tree 每次選一個點, 將資料分成 離這個點近的, 跟離這個點遠的.
- * 至於怎麼選呢...., 嘛還沒研究, 先random
- *
- * 參考資料連結:
- * - http://stevehanov.ca/blog/index.php?id=130
- * - http://pnylab.com/pny/papers/vptree/vptree
- *
- * Template Class Operators Request
- * --------------------------------
- *
- * |const?|Typename|Operator | Parameters |Return Type | Description |
- * |-----:|:------:|----------:|:-------------|:----------:|:------------------|
- * |const | Vector|operator[] |(size_t \c n) | Scalar | 取得第\c n 維度量 |
- * |const | Vector|operator= |(Vector \c v) | Vector& | copy operator |
- * |const | Vector|operator< |(Vector \c v) | bool | 權重比較 |
- * |const | Scalar| 'Scalar' |(int \c n) | Scalar | 建構子,
- * 其中一定\c n=0or4 |
- * |const | Scalar|operator* |(Scalar \c s) | Scalar | 相乘 |
- * |const | Scalar|operator+ |(Scalar \c s) | Scalar | 相加 |
- * |const | Scalar|operator- |(Scalar \c s) | Scalar | 相差 |
- * |const | Scalar|operator- |( ) | Scalar | 取負號 |
- * |const | Scalar|operator< |(Scalar \c s) | bool | 大小比較 |
- *
- * @note:
- * -實測結果發覺, 維度小的時候, 比起中規中矩的 \c KD_Tree, \c VP_Tree 有
- * \b random 於其中, 因此時間複雜度只是期望值 \c O(logN) 但是測資大到
- * 一定程度, \c KD_Tree 效率會一整個大幅掉下, 但 \c VP_Tree 幾乎不受影響
- * -TODO \c insert(), \c erase() 算是未完成功能
- */
-template<class Vector, class Scalar>
-class VP_Tree {
-public:
- typedef std::vector<Vector> Vectors;
-private:
- struct Node {
- size_t index_;
- Scalar threshold_;
- Node* nearChild_;
- Node* farChild_;
- //
- Node(size_t index): index_(index), nearChild_(NULL), farChild_(NULL){
- }
- };
- struct Answer {
- size_t index_;
- Scalar dist2_;
- //
- Answer(size_t index, Scalar const& dist2): index_(index), dist2_(dist2){
- }
- Answer(Answer const& answer2):
- index_(answer2.index_), dist2_(answer2.dist2_){
- }
- };
- class AnswerCompare {
- private:
- Vectors const* vectors_;
- bool cmpValue_;
- public:
- AnswerCompare(Vectors const* vectors, bool cmpValue):
- vectors_(vectors), cmpValue_(cmpValue){
- }
- bool operator()(Answer const& a, Answer const& b) const {
- if (a.dist2_ < b.dist2_) return true;
- if (b.dist2_ < a.dist2_) return false;
- return (cmpValue_ && ((*vectors_)[a.index_] < (*vectors_)[b.index_]));
- }
- };
- typedef std::vector<Answer> AnswerV;
- typedef std::priority_queue<Answer, AnswerV, AnswerCompare> Answers;
-
- Vectors vectors_;
- Node* root_;
- size_t dimension_;
- bool needRebuild_;
-
- Scalar distance2(Vector const& v1, Vector const& v2) const {
- Scalar ret(0);
- for (size_t i = 0; i < dimension_; i++) ret += squ(v1[i] - v2[i]);
- return ret;
- }
- int distanceCompare(Scalar const& a2, Scalar const& b2,
- Scalar const& c2) const {
- if (b2 < 0) {
- return -distanceCompare(c2, -b2, a2);
- }
- Scalar cab(c2 - a2 - b2);
- if (cab < Scalar(0)) return 1;
- Scalar ab2(Scalar(4) * a2 * b2), cab2(squ(cab));
- if ( ab2 < cab2) return -1;
- else if (cab2 < ab2) return 1;
- else return 0;
- }
- Scalar split(ssize_t first, ssize_t last, size_t order,
- Vector const& center) {
- ssize_t first0 = first;
- std::vector<Scalar> dist2(last - first + 1);
- for (ssize_t i = first; i <= last; i++) {
- dist2[i - first0] = distance2(vectors_[i], center);
- }
- while (first < last) {
- size_t thresholdindex_ = first + rand() % (last - first + 1);
- Scalar threshold(dist2[thresholdindex_ - first0]);
- size_t large_first = last + 1;
- for( ssize_t i=first; first<=(ssize_t)large_first-1; large_first--) {
- if (threshold < dist2[large_first - 1 - first0]) continue;
- while (i < (ssize_t)large_first-1&&!(threshold < dist2[i-first0])) i++;
- if (i < (ssize_t)large_first - 1){
- std::swap(dist2 [large_first - 1 - first0], dist2 [i - first0]);
- std::swap(vectors_[large_first - 1 ], vectors_[i ]);
- i++;
- }
- else {
- break;
- }
- }
- if (large_first == (size_t)last + 1) {
- std::swap(dist2 [thresholdindex_-first0], dist2 [last-first0]);
- std::swap(vectors_[thresholdindex_ ], vectors_[last ]);
- if ((ssize_t)order == last - first) {
- first = last;
- break;
- }
- last--;
- }
- else {
- if (order < large_first - first) {
- last = large_first - 1;
- }
- else {
- order -= large_first - first;
- first = large_first;
- }
- }
- }
- return dist2[first - first0];
- }
- //
- Node* build(ssize_t first, ssize_t last) {
- if (first > last) return NULL;
- Node* ret = new Node(first);
- if (first < last) {
- std::swap(vectors_[first],
- vectors_[first + rand() % (last - first + 1)]);
- ssize_t mid = (first + 1 + last + 1) / 2;
- ret->threshold_ = split(first + 1, last, mid - (first + 1),
- vectors_[first]);
- ret->nearChild_ = build(first + 1, mid - 1 );
- ret->farChild_ = build( mid , last);
- }
- return ret;
- }
- void query(Vector const& vector,
- size_t k,
- AnswerCompare const& cmp,
- Node const* node,
- Answers* out) const {
- if (node == NULL) return ;
- Scalar dist2 = distance2(vector, vectors_[node->index_]);
- Answer my_ans(node->index_, dist2);
- if (out->size() < k || cmp(my_ans, out->top())) {
- out->push(my_ans);
- if (out->size() > k) {
- out->pop();
- }
- }
- if (node->nearChild_ == NULL && node->farChild_ == NULL) return ;
- if (out->size() < k || distanceCompare(dist2, -out->top().dist2_,
- node->threshold_) <= 0) {
- query(vector, k, cmp, node->nearChild_, out);
- }
- if (out->size() < k || distanceCompare(dist2, out->top().dist2_,
- node->threshold_) >= 0) {
- query(vector, k, cmp, node->farChild_, out);
- }
- }
- void clear(Node* root) {
- if(root == NULL) return ;
- clear(root->nearChild_);
- clear(root->farChild_);
- delete root;
- }
- Node* dup(Node* root) {
- if(root == NULL) return ;
- Node* ret = new Node(root->index_);
- ret->threshold_ = root->threshold_;
- ret->nearChild_ = dup(root->nearChild_);
- ret->farChild_ = dup(root->farChild_ );
- return ret;
- }
-public:
- //! @brief constructor, with dimension = 1
- VP_Tree(): root_(NULL), vectors_(0), dimension_(1), needRebuild_(false){
- reset(0);
- }
-
- //! @brief constructor, 複製資料
- VP_Tree(VP_Tree const& tree2):
- vectors_(tree2.vectors_),
- root_(dup(tree2.root_)),
- dimension_(tree2.dimension_),
- needRebuild_(tree2.needRebuild_) {
- }
-
- //! @brief constructor, 給定dimension
- VP_Tree(size_t dimension):
- vectors_(0),
- root_(NULL),
- dimension_(0),
- needRebuild_(false) {
- reset(dimension);
- }
-
- //! @brief destructor
- ~VP_Tree() {
- clear(root_);
- }
-
- /*!
- * @brief 複製資料
- */
- VP_Tree& copyFrom(VP_Tree const& tree2) {
- reset(tree2.dimension_);
- vectors_ = tree2.vectors_;
- root_ = dup(tree2.root_);
- needRebuild_ = tree2.needRebuild_;
- return *this;
- }
-
- /*!
- * @brief 將給定的Vector加到set中
- */
- void insert(Vector const& vector) {
- vectors_.push_back(vector);
- needRebuild_ = true;
- }
-
- /*!
- * @brief 將給定的Vector從set移除
- */
- bool erase (Vector const& vector) {
- for (ssize_t i = 0, I = vectors_.size(); i < I; i++) {
- if (vectors_[i] == vector) {
- if (i != I - 1) std::swap(vectors_[i], vectors_[I - 1]);
- needRebuild_ = true;
- vectors_.pop_back();
- return true;
- }
- }
- return false;
- }
-
- /*!
- * @brief 檢查至今是否有 insert/erase 被呼叫來決定是否 \c rebuild()
- */
- void build() {
- if (needRebuild_) {
- forceBuild();
- }
- }
-
- /*!
- * @brief 重新建樹
- */
- void forceBuild() {
- root_ = build(0, (size_t)vectors_.size() - 1);
- needRebuild_ = false;
- }
-
- /*!
- * @brief 查找
- *
- * 於set中找尋距離指定向量前 \c i 近的向量, 並依照由近而遠的順序排序.
- * 如果有兩個向量\c v1,v2 距離一樣, 且 \c cmp 為\c true , 則直接依照
- * \c v1<v2 來決定誰在前面. 最後回傳一陣列包含所有解.
- */
- Vectors query(Vector const& vector,
- size_t nearestNumber,
- bool compareWholeVector) const {
- ((VP_Tree*)this)->build();
- AnswerCompare cmp(&vectors_, compareWholeVector);
- Answers answers(cmp);
- query(vector, nearestNumber, cmp, root_, &answers);
- std::stack<Answer> rev;
- for ( ; !answers.empty(); answers.pop()) rev.push(answers.top());
- Vectors ret;
- for ( ; !rev.empty(); rev.pop()) ret.push_back(vectors_[rev.top().index_]);
- return ret;
- }
-
- /*!
- * @brief 清空所有資料
- */
- void clear() {
- clear(root_);
- vectors_.clear();
- root_ = NULL;
- needRebuild_ = false;
- }
-
- /*!
- * @brief 清空所有資料並重新給定維度
- */
- size_t reset(size_t dimension) {
- clear();
- dimension_ = std::max((size_t)1, dimension);
- return dimension_;
- }
-
- //! @brief same as \c copyFrom(tree2)
- VP_Tree& operator=(VP_Tree const& tree2) {
- return copyFrom(tree2);
- }
-};
-
-} // meow
-
-#endif // dsa_VP_Tree_H__