diff options
author | cathook <b01902109@csie.ntu.edu.tw> | 2014-06-01 13:56:57 +0800 |
---|---|---|
committer | cathook <b01902109@csie.ntu.edu.tw> | 2014-06-01 13:56:57 +0800 |
commit | d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0 (patch) | |
tree | 16f7920c5079e0aefcf9509d2dbab59c464d42bd /doc/latex/classmeow_1_1PhotoProjection.tex | |
parent | bd58f63900410ec4764031f2e6de2d75e91434b3 (diff) | |
download | meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar.gz meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar.bz2 meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar.lz meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar.xz meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.tar.zst meow-d5052f1c296dddf51b3e83d59bf3e3c1952cb2d0.zip |
big chnage
Diffstat (limited to 'doc/latex/classmeow_1_1PhotoProjection.tex')
-rw-r--r-- | doc/latex/classmeow_1_1PhotoProjection.tex | 324 |
1 files changed, 324 insertions, 0 deletions
diff --git a/doc/latex/classmeow_1_1PhotoProjection.tex b/doc/latex/classmeow_1_1PhotoProjection.tex new file mode 100644 index 0000000..9107c0b --- /dev/null +++ b/doc/latex/classmeow_1_1PhotoProjection.tex @@ -0,0 +1,324 @@ +\hypertarget{classmeow_1_1PhotoProjection}{\section{meow\-:\-:Photo\-Projection$<$ Scalar $>$ Class Template Reference} +\label{classmeow_1_1PhotoProjection}\index{meow\-::\-Photo\-Projection$<$ Scalar $>$@{meow\-::\-Photo\-Projection$<$ Scalar $>$}} +} + + +A {\bfseries photo} {\bfseries projection} is a kind of transformation that project point/vector to a flat {\bfseries photo}. + + + + +{\ttfamily \#include \char`\"{}Transformations.\-h\char`\"{}} + +Inheritance diagram for meow\-:\-:Photo\-Projection$<$ Scalar $>$\-:\begin{figure}[H] +\begin{center} +\leavevmode +\includegraphics[height=2.000000cm]{classmeow_1_1PhotoProjection} +\end{center} +\end{figure} +\subsection*{Public Member Functions} +\begin{DoxyCompactItemize} +\item +\hyperlink{classmeow_1_1PhotoProjection_a902922d6be5fcb6ce2ce563031913e36}{Photo\-Projection} (size\-\_\-t \hyperlink{classmeow_1_1PhotoProjection_a8bc014829f304ae83da2862fcf4f6dce}{dimension}) +\item +\hyperlink{classmeow_1_1PhotoProjection_a1e12a0292cf00f4d107b4a5e8e0fa464}{Photo\-Projection} (size\-\_\-t \hyperlink{classmeow_1_1PhotoProjection_a8bc014829f304ae83da2862fcf4f6dce}{dimension}, Scalar const \&f) +\item +\hyperlink{classmeow_1_1PhotoProjection_afba51bf2a5f236057bfd279ef68e0d71}{Photo\-Projection} (\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} const \&p) +\item +\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} \& \hyperlink{classmeow_1_1PhotoProjection_a4a26e30caff3bd71ff68e97f5dc9ec46}{copy\-From} (\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} const \&b) +\item +\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} \& \hyperlink{classmeow_1_1PhotoProjection_a632973b2b8675f126b74e5ced2f62d52}{reference\-From} (\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} const \&b) +\item +Scalar \hyperlink{classmeow_1_1PhotoProjection_a3499d5c76df3c78028f3e1b7d8cb48e6}{parameter} (size\-\_\-t i) const +\begin{DoxyCompactList}\small\item\em Same as {\ttfamily \hyperlink{classmeow_1_1PhotoProjection_af143b826cad7171ec539432d3add9da5}{focal()}} \end{DoxyCompactList}\item +Scalar \hyperlink{classmeow_1_1PhotoProjection_adecf5a6f3f1f07d7fc6b4714fa80e8a1}{parameter} (size\-\_\-t i, Scalar const \&s) +\begin{DoxyCompactList}\small\item\em Same as {\ttfamily focal(s)} \end{DoxyCompactList}\item +Scalar \hyperlink{classmeow_1_1PhotoProjection_af143b826cad7171ec539432d3add9da5}{focal} () const +\begin{DoxyCompactList}\small\item\em Get the focal length. \end{DoxyCompactList}\item +Scalar \hyperlink{classmeow_1_1PhotoProjection_a19f5080ff959073d334c6e21a6247f13}{focal} (Scalar const \&f) +\begin{DoxyCompactList}\small\item\em Set the focal length. \end{DoxyCompactList}\item +size\-\_\-t \hyperlink{classmeow_1_1PhotoProjection_a8bc014829f304ae83da2862fcf4f6dce}{dimension} () const +\begin{DoxyCompactList}\small\item\em Get the dimension of this projection. \end{DoxyCompactList}\item +\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1PhotoProjection_ac4bbf64ef4341a10bc444147142c7d5f}{transformate} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x) const +\begin{DoxyCompactList}\small\item\em Project the input vector(s) onto the plane. \end{DoxyCompactList}\item +\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1PhotoProjection_aabb88ff170cc655a3b7262af3337a0a3}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x) const +\begin{DoxyCompactList}\small\item\em Return the jacobian matrix (derivate by the input vector) of this projection. \end{DoxyCompactList}\item +\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1PhotoProjection_a4a07aecb4474633c82d6b73dc1cdd53d}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x, size\-\_\-t i) const +\begin{DoxyCompactList}\small\item\em Return the jacobian matrix (derivate by the focus length) of this projection. \end{DoxyCompactList}\item +\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} \& \hyperlink{classmeow_1_1PhotoProjection_a7c05a0abd905abc1330331627b6a1d90}{operator=} (\hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection} const \&b) +\begin{DoxyCompactList}\small\item\em Same as {\ttfamily copy\-From(b)} \end{DoxyCompactList}\item +\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1PhotoProjection_aa50f02a71f9be0b417b0dc9f8ff5d9ab}{operator()} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&v) const +\begin{DoxyCompactList}\small\item\em Same as {\ttfamily transformate(v)} \end{DoxyCompactList}\end{DoxyCompactItemize} +\subsection*{Additional Inherited Members} + + +\subsection{Detailed Description} +\subsubsection*{template$<$class Scalar$>$class meow\-::\-Photo\-Projection$<$ Scalar $>$} + +A {\bfseries photo} {\bfseries projection} is a kind of transformation that project point/vector to a flat {\bfseries photo}. + +Assume\-: +\begin{DoxyItemize} +\item The dimension of a photo projection is $ N $ +\item The length of the input vector is $ L $ +\item The focal length is $ f $ +\end{DoxyItemize}Then transformation is like below\-: \par + \[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{-x_1 \times f}{x_N} \\ \frac{-x_2 \times f}{x_N} \\ \frac{-x_3 \times f}{x_N} \\ . \\ . \\ . \\ -f \\ \end{array} \right] \\ \] i.\-e. projecte the vector onto the plane $ x_N = -f $. + +\begin{DoxyAuthor}{Author} +cat\-\_\-leopard +\end{DoxyAuthor} + + +\subsection{Constructor \& Destructor Documentation} +\hypertarget{classmeow_1_1PhotoProjection_a902922d6be5fcb6ce2ce563031913e36}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!Photo\-Projection@{Photo\-Projection}} +\index{Photo\-Projection@{Photo\-Projection}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{Photo\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::{\bf Photo\-Projection} ( +\begin{DoxyParamCaption} +\item[{size\-\_\-t}]{dimension} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a902922d6be5fcb6ce2ce563031913e36} +Constructor, focal = 1 \hypertarget{classmeow_1_1PhotoProjection_a1e12a0292cf00f4d107b4a5e8e0fa464}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!Photo\-Projection@{Photo\-Projection}} +\index{Photo\-Projection@{Photo\-Projection}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{Photo\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::{\bf Photo\-Projection} ( +\begin{DoxyParamCaption} +\item[{size\-\_\-t}]{dimension, } +\item[{Scalar const \&}]{f} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a1e12a0292cf00f4d107b4a5e8e0fa464} +Constructor \hypertarget{classmeow_1_1PhotoProjection_afba51bf2a5f236057bfd279ef68e0d71}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!Photo\-Projection@{Photo\-Projection}} +\index{Photo\-Projection@{Photo\-Projection}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{Photo\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::{\bf Photo\-Projection} ( +\begin{DoxyParamCaption} +\item[{{\bf Photo\-Projection}$<$ Scalar $>$ const \&}]{p} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_afba51bf2a5f236057bfd279ef68e0d71} +Constructor, copy settings from another \hyperlink{classmeow_1_1PhotoProjection}{Photo\-Projection}. + +\subsection{Member Function Documentation} +\hypertarget{classmeow_1_1PhotoProjection_a4a26e30caff3bd71ff68e97f5dc9ec46}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!copy\-From@{copy\-From}} +\index{copy\-From@{copy\-From}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{copy\-From}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Photo\-Projection}\& {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::copy\-From ( +\begin{DoxyParamCaption} +\item[{{\bf Photo\-Projection}$<$ Scalar $>$ const \&}]{b} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a4a26e30caff3bd71ff68e97f5dc9ec46} +Copy settings from another one +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em b} & another one \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +{\ttfamily $\ast$this} +\end{DoxyReturn} +\hypertarget{classmeow_1_1PhotoProjection_a8bc014829f304ae83da2862fcf4f6dce}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!dimension@{dimension}} +\index{dimension@{dimension}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{dimension}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ size\-\_\-t {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::dimension ( +\begin{DoxyParamCaption} +{} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a8bc014829f304ae83da2862fcf4f6dce} + + +Get the dimension of this projection. + +\hypertarget{classmeow_1_1PhotoProjection_af143b826cad7171ec539432d3add9da5}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!focal@{focal}} +\index{focal@{focal}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{focal}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::focal ( +\begin{DoxyParamCaption} +{} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_af143b826cad7171ec539432d3add9da5} + + +Get the focal length. + +\begin{DoxyReturn}{Returns} +Focal length +\end{DoxyReturn} +\hypertarget{classmeow_1_1PhotoProjection_a19f5080ff959073d334c6e21a6247f13}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!focal@{focal}} +\index{focal@{focal}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{focal}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::focal ( +\begin{DoxyParamCaption} +\item[{Scalar const \&}]{f} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a19f5080ff959073d334c6e21a6247f13} + + +Set the focal length. + + +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em f} & New focal length \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +New focal length +\end{DoxyReturn} +\hypertarget{classmeow_1_1PhotoProjection_aabb88ff170cc655a3b7262af3337a0a3}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!jacobian@{jacobian}} +\index{jacobian@{jacobian}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::jacobian ( +\begin{DoxyParamCaption} +\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1PhotoProjection_aabb88ff170cc655a3b7262af3337a0a3} + + +Return the jacobian matrix (derivate by the input vector) of this projection. + +This method only allow a vector-\/like matrix be input. Assume\-: +\begin{DoxyItemize} +\item The dimension of this projection is $ N $ +\item The length of the input vector is $ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $ +\item The focal length of this projection is $ f $ +\end{DoxyItemize}Then the jacobian matrix is like below\-: \par + \[ f \times \left[ \begin{array}{ccccc} \frac{-1}{x_N} & 0 & 0 & ... & \frac{1}{x_N^2} \\ 0 & \frac{-1}{x_N} & 0 & ... & \frac{1}{x_N^2} \\ 0 & 0 & \frac{-1}{x_N} & ... & \frac{1}{x_N^2} \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ 0 & 0 & 0 & ... & 0 \\ \end{array} \right] \] + + +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em x} & The input matrix. \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +The output matrix. +\end{DoxyReturn} + + +Reimplemented from \hyperlink{classmeow_1_1Transformation_a97b459877b4e508193071fa166a126c9}{meow\-::\-Transformation$<$ Scalar $>$}. + +\hypertarget{classmeow_1_1PhotoProjection_a4a07aecb4474633c82d6b73dc1cdd53d}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!jacobian@{jacobian}} +\index{jacobian@{jacobian}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::jacobian ( +\begin{DoxyParamCaption} +\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x, } +\item[{size\-\_\-t}]{i} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1PhotoProjection_a4a07aecb4474633c82d6b73dc1cdd53d} + + +Return the jacobian matrix (derivate by the focus length) of this projection. + +This method only allow a vector-\/like matrix be input. Assume\-: +\begin{DoxyItemize} +\item The dimension of this projection is $ N $ +\item The length of the input vector is $ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $ +\item The focal length of this projection is $ f $ +\end{DoxyItemize}Then the jacobian matrix is like below\-: \par + \[ f \times \left[ \begin{array}{c} \frac{-x_1}{x_N} \\ \frac{-x_2}{x_N} \\ \frac{-x_3}{x_N} \\ . \\ . \\ . \\ -1 \\ \end{array} \right] \] + + +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em x} & The input matrix. \\ +\hline +\mbox{\tt in} & {\em i} & Useless parameter \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +The output matrix. +\end{DoxyReturn} + + +Reimplemented from \hyperlink{classmeow_1_1Transformation_a18590a4501b79a9ad38eb8fa3c966eb8}{meow\-::\-Transformation$<$ Scalar $>$}. + +\hypertarget{classmeow_1_1PhotoProjection_aa50f02a71f9be0b417b0dc9f8ff5d9ab}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!operator()@{operator()}} +\index{operator()@{operator()}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{operator()}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::operator() ( +\begin{DoxyParamCaption} +\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{v} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_aa50f02a71f9be0b417b0dc9f8ff5d9ab} + + +Same as {\ttfamily transformate(v)} + +\hypertarget{classmeow_1_1PhotoProjection_a7c05a0abd905abc1330331627b6a1d90}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!operator=@{operator=}} +\index{operator=@{operator=}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{operator=}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Photo\-Projection}\& {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::operator= ( +\begin{DoxyParamCaption} +\item[{{\bf Photo\-Projection}$<$ Scalar $>$ const \&}]{b} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a7c05a0abd905abc1330331627b6a1d90} + + +Same as {\ttfamily copy\-From(b)} + +\hypertarget{classmeow_1_1PhotoProjection_a3499d5c76df3c78028f3e1b7d8cb48e6}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!parameter@{parameter}} +\index{parameter@{parameter}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{parameter}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::parameter ( +\begin{DoxyParamCaption} +\item[{size\-\_\-t}]{i} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1PhotoProjection_a3499d5c76df3c78028f3e1b7d8cb48e6} + + +Same as {\ttfamily \hyperlink{classmeow_1_1PhotoProjection_af143b826cad7171ec539432d3add9da5}{focal()}} + + + +Implements \hyperlink{classmeow_1_1Transformation_a09e71e5af508d7c0e09fdbeaacbe4365}{meow\-::\-Transformation$<$ Scalar $>$}. + +\hypertarget{classmeow_1_1PhotoProjection_adecf5a6f3f1f07d7fc6b4714fa80e8a1}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!parameter@{parameter}} +\index{parameter@{parameter}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{parameter}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::parameter ( +\begin{DoxyParamCaption} +\item[{size\-\_\-t}]{i, } +\item[{Scalar const \&}]{s} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1PhotoProjection_adecf5a6f3f1f07d7fc6b4714fa80e8a1} + + +Same as {\ttfamily focal(s)} + + + +Implements \hyperlink{classmeow_1_1Transformation_a2a90b93490712232b81a628b5057526f}{meow\-::\-Transformation$<$ Scalar $>$}. + +\hypertarget{classmeow_1_1PhotoProjection_a632973b2b8675f126b74e5ced2f62d52}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!reference\-From@{reference\-From}} +\index{reference\-From@{reference\-From}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{reference\-From}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Photo\-Projection}\& {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::reference\-From ( +\begin{DoxyParamCaption} +\item[{{\bf Photo\-Projection}$<$ Scalar $>$ const \&}]{b} +\end{DoxyParamCaption} +)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1PhotoProjection_a632973b2b8675f126b74e5ced2f62d52} +Reference settings from another one +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em b} & another one \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +{\ttfamily $\ast$this} +\end{DoxyReturn} +\hypertarget{classmeow_1_1PhotoProjection_ac4bbf64ef4341a10bc444147142c7d5f}{\index{meow\-::\-Photo\-Projection@{meow\-::\-Photo\-Projection}!transformate@{transformate}} +\index{transformate@{transformate}!meow::PhotoProjection@{meow\-::\-Photo\-Projection}} +\subsubsection[{transformate}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Photo\-Projection}$<$ Scalar $>$\-::transformate ( +\begin{DoxyParamCaption} +\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x} +\end{DoxyParamCaption} +) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1PhotoProjection_ac4bbf64ef4341a10bc444147142c7d5f} + + +Project the input vector(s) onto the plane. + +The equation of the plane is $ x_N = -f $, where the $ N $ is the dimension of this projection and f is the focal length. \par + If the number of columns of the input matrix is larger than 1, this method will think that you want to transform multiple vector once and the number of columns of the output matrix will be the same of the number of columns of the input one. + + +\begin{DoxyParams}[1]{Parameters} +\mbox{\tt in} & {\em x} & The input matrix. \\ +\hline +\end{DoxyParams} +\begin{DoxyReturn}{Returns} +The output matrix. +\end{DoxyReturn} +\begin{DoxyNote}{Note} +Take into account that too much safty checking will lead to inefficient, this method will not checking whether the dimension of the input vector/matrix is right. So be sure the data is valid before you call this method. +\end{DoxyNote} + + +Implements \hyperlink{classmeow_1_1Transformation_aa0c299b9ad13020a9eb460de01378ddc}{meow\-::\-Transformation$<$ Scalar $>$}. + + + +The documentation for this class was generated from the following file\-:\begin{DoxyCompactItemize} +\item +meowpp/math/\hyperlink{Transformations_8h}{Transformations.\-h}\end{DoxyCompactItemize} |