\hypertarget{methods_8h}{\section{meowpp/math/methods.h File Reference} \label{methods_8h}\index{meowpp/math/methods.\-h@{meowpp/math/methods.\-h}} } {\ttfamily \#include \char`\"{}Matrix.\-h\char`\"{}}\\* {\ttfamily \#include \char`\"{}Vector.\-h\char`\"{}}\\* {\ttfamily \#include \char`\"{}utility.\-h\char`\"{}}\\* {\ttfamily \#include $<$cstdlib$>$}\\* {\ttfamily \#include $<$vector$>$}\\* \subsection*{Namespaces} \begin{DoxyCompactItemize} \item namespace \hyperlink{namespacemeow}{meow} \end{DoxyCompactItemize} \subsection*{Functions} \begin{DoxyCompactItemize} \item {\footnotesize template$<$class Data , class Weighting\-Class $>$ }\\std\-::vector$<$ Data $>$ \hyperlink{namespacemeow_a43a73b75f2e23c8172d2098d57eaf75a}{meow\-::ransac} (std\-::vector$<$ Data $>$ const \&data, Weighting\-Class const \&w, size\-\_\-t N, \hyperlink{classdouble}{double} p0, \hyperlink{classdouble}{double} P) \begin{DoxyCompactList}\small\item\em Run the {\bfseries R\-A\-N\-S\-A\-C} method to approach the best solution. \end{DoxyCompactList}\item {\footnotesize template$<$class Scalar , class F , class J , class I , class Stop $>$ }\\Vector$<$ Scalar $>$ \hyperlink{namespacemeow_a8e4a4baed7fb497f170075648ac95077}{meow\-::levenberg\-Marquardt} (F const \&func, J const \&jaco, I const \&iden, Vector$<$ Scalar $>$ const \&init, Stop const \&stop, \hyperlink{classint}{int} counter=-\/1) \begin{DoxyCompactList}\small\item\em Run the {\bfseries Levenberg-\/\-Marquardt} method to solve a non-\/linear least squares problem. \end{DoxyCompactList}\end{DoxyCompactItemize}