\form#0:$ (x ,y ,z ) $ \form#1:$ (x',y',z') $ \form#2:$ \vec{\theta}=(\theta_x,\theta_y,\theta_z) $ \form#3:\[ \left[ \begin{array}{c} x' \\ y' \\ z' \\ \end{array} \right] = \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \] \form#4:$ \phi $ \form#5:$ \vec{\theta} $ \form#6:$ \phi = \frac{\left|\vec{\theta}\right|}{2} = \frac{1}{2}\sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} $ \form#7:$ \vec{n} $ \form#8:$ \vec{n} = (n_x,n_y,n_z) = \vec{\theta} / 2\phi $ \form#9:\[ \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \] \form#10:\[ \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \] \form#11:\[ \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \] \form#12:\[ \left[ \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \] \form#13:$ (x,y,z) $ \form#14:$ \vec{n}, \phi $ \form#15:$ N $ \form#16:$ p_0 $ \form#17:$ P $ \form#18:$ M $ \form#19:\[ \begin{aligned} & (1 - p_0^N)^M \leq(1 - P) \\ \Rightarrow & M \log(1 - p_0^N) \leq \log(1 - P) \\ \Rightarrow & M \geq \frac{\log(1 - p)}{\log(1 - p_0^N)},~~ \because (1-p_0^N<1 \Rightarrow \log(1-p_0^N)<0) \end{aligned} \] \form#20:$ M = \lceil \frac{\log(1 - P)}{\log(1 - p_0^N)} \rceil $ \form#21:$ F: \mathbb{R} ^N \mapsto \mathbb{R}^M $ \form#22:$ v $ \form#23:$ F(v)^T F(v) = 0$ \form#24:$ \epsilon $ \form#25:$ F(v)^T F(v) < \epsilon $ \form#26:$ v_0 $ \form#27:$ v_1, v_2, v_3, v_4... $ \form#28:$ v_k $ \form#29:$ F(v_k)^TF(v_k)<\epsilon $ \form#30:\[ v_{i+1} = v_i + (J(v_i)^TJ(v_i)+\lambda I_{N\times N})^{-1} J(v_i)^T F(v_i) \] \form#31:$ J(v) $ \form#32:\[ J(v) = \frac{d}{dv}F(v) = \left[ \begin{array}{ccccc} \frac{\partial F_1(v)}{\partial v_1} & \frac{\partial F_1(v)}{\partial v_2} & \frac{\partial F_1(v)}{\partial v_3} & ... & \frac{\partial F_1(v)}{\partial v_N} \\ \frac{\partial F_2(v)}{\partial v_1} & \frac{\partial F_2(v)}{\partial v_2} & \frac{\partial F_2(v)}{\partial v_3} & ... & \frac{\partial F_2(v)}{\partial v_N} \\ \frac{\partial F_3(v)}{\partial v_1} & \frac{\partial F_3(v)}{\partial v_2} & \frac{\partial F_3(v)}{\partial v_3} & ... & \frac{\partial F_3(v)}{\partial v_N} \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ \frac{\partial F_M(v)}{\partial v_1} & \frac{\partial F_M(v)}{\partial v_2} & \frac{\partial F_M(v)}{\partial v_3} & ... & \frac{\partial F_M(v)}{\partial v_N} \\ \end{array} \right] \] \form#33:$ \lambda $ \form#34:$ F $ \form#35:$ J $ \form#36:$ \lambda I_{N \times N} $ \form#37:\[ S_{top}(v) = \begin{cases} true & if~F(v)<\epsilon \\ false & else \end{cases} \] \form#38:$ R $ \form#39:\[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{x_1 \times R}{L} \\ \frac{x_2 \times R}{L} \\ \frac{x_3 \times R}{L} \\ . \\ . \\ . \\ \frac{x_N \times R}{L} \\ \end{array} \right] \\ \] \form#40:$ L=\sqrt{x_1^2 + x_2^2 + x_3^2 + ... + x_N^2 } $ \form#41:$ L $ \form#42:$ f $ \form#43:\[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{-x_1 \times f}{x_N} \\ \frac{-x_2 \times f}{x_N} \\ \frac{-x_3 \times f}{x_N} \\ . \\ . \\ . \\ -f \\ \end{array} \right] \\ \] \form#44:$ x_N = -f $ \form#45:$ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $ \form#46:\[ \frac{R}{L^3} \times \left[ \begin{array}{ccccc} L^2-x_1^2 & -x_1x_2 & -x_1x_3 & ... & -x_1x_N \\ -x_2x_1 & L^2-x_2^2 & -x_2x_3 & ... & -x_2x_N \\ -x_3x_1 & -x_3x_2 & L^2-x_3^2 & ... & -x_3x_N \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ -x_Nx_1 & -x_Nx_2 & -x_Nx_3 & ... & L^2-x_N^2 \\ \end{array} \right] \] \form#47:\[ R \times \left[ \begin{array}{c} \frac{x_1}{L} \\ \frac{x_2}{L} \\ \frac{x_3}{L} \\ . \\ . \\ . \\ \frac{x_N}{L} \\ \end{array} \right] \] \form#48:\[ f \times \left[ \begin{array}{ccccc} \frac{-1}{x_N} & 0 & 0 & ... & \frac{1}{x_N^2} \\ 0 & \frac{-1}{x_N} & 0 & ... & \frac{1}{x_N^2} \\ 0 & 0 & \frac{-1}{x_N} & ... & \frac{1}{x_N^2} \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ 0 & 0 & 0 & ... & 0 \\ \end{array} \right] \] \form#49:\[ f \times \left[ \begin{array}{c} \frac{-x_1}{x_N} \\ \frac{-x_2}{x_N} \\ \frac{-x_3}{x_N} \\ . \\ . \\ . \\ -1 \\ \end{array} \right] \]